
In-memory Compression for Page Swapping

Joel Nider
joel@ece.ubc.ca

April 28, 2021

Abstract

Swapping memory pages to disk is commonly used
to extend main memory at the cost of a significant
decrease in performance. Swap device I/O latency is
the largest contributor to the performance degrada-
tion, even with fast block storage devices. Caching
compressed pages in RAM that are swapped out sig-
nificantly improves the time for both loads and stores
from a swap device. The cost is both additional
processing time that the CPU must spend on com-
pression and the reduced amount of available RAM.
I propose to overcome these costs by using PIM
(processing-in-memory) enabled DRAM for caching
swapped pages. Pushing compression and bookkeep-
ing responsibilities to the PIM-enabled RAM frees
the host CPU and main RAM. I investigate the deci-
sions and trade-offs in storage allocation on the PIM
enabled DRAM. I conclude that a fixed-size block al-
locator with a 256KB block size is the best choice for
the amount of available storage (60MB) and input
page size (4KB) on my test system.

1 Introduction

Main memory is a precious resource. We often run
programs than cannot fit in physical memory - ei-
ther too many programs competing for ram, or a sin-
gle program that has high demands. Virtual mem-
ory was designed to overcome this limitation by di-
viding the memory into small, equally sized chunks
called pages. Hardware to support virtual memory
was added to the CPU called the MMU (memory
management unit). This gives the OS the flexibil-

ity to move memory contents to other devices, called
swapping. Through page tables, the MMU can deter-
mine if a virtual address is backed by physical mem-
ory or not. If the CPU tries to access memory that is
not present, the OS is given an opportunity (through
a page fault) to fetch the page - called ‘swapping in’.
If a program requires more memory, the OS can take
pages that haven’t been used in a while and move
them to secondary storage - called ‘swapping out’.

Swapping is a way to extend memory, but it is
slow and hurts performance. Swapped pages are gen-
erally written to block I/O devices (secondary stor-
age). This effectively extends the size of RAM by the
size of the secondary storage, which can be orders of
magnitude larger than installed RAM. The problem
is that the secondary storage is often orders of magni-
tude slower than RAM. Together with the overhead
of the OS managing all of this movement, paging is
very slow.

Compressing swapped pages and caching them in
a portion of main memory is a popular approach[2,
3, 5]. Swap caches can be built to use a dynamic
amount of RAM. As memory pressure grows, more
of the RAM gets added to the cache which is com-
pressed. At some point however, the number of phys-
ical pages available for the working set becomes so
small that even the cache is no longer effective as the
overhead of compression and swapping overtakes ap-
plication processing time. A nice feature is the grace-
ful degradation - application performance gets slowly
worse over time as the memory pressure increases.
The swap cache still relies on the CPU for compress-
ing and decompressing pages as they are swapped in
and out. While this is still faster than relying on sec-

1

ondary storage, it is much slower than accessing RAM
directly. The problem is that it still takes up space
in RAM and it distracts the CPU from running the
application. It is slower than RAM, but faster than
disk.

A better solution is to have the RAM compress the
swapped pages by itself, without involving the CPU.
PIM (processing in memory) may provide us with a
way to improve performance of swap caches. The
main advantage is that the memory can operate on
many pages in parallel, thus improving performance.
In addition, the CPU is freed from having to per-
form the compress/decompress operations and any
bookkeeping related to stored pages. This can have
secondary effects such as reducing i-cache misses in
the application.

PIM has been proposed in the architecture commu-
nity for a wide range of applications. Some companies
are now on the verge of releasing the first commercial
products. I explore the design space of a compressed
page swap cache for Linux, using a PIM architecture
based on the UPMEM[1] design.

2 Background

Linux kernel modules The Linux kernel is a
monolithic kernel that is composed of core function-
ality and optional functionality. Much of the optional
functionality can either be compiled into the kernel
directly, or loaded dynamically in modules. The ad-
vantage to loadable kernel modules is that they may
be loaded on-demand, for example, a device driver
that is only needed for a removable device such as
a USB thumb drive. Selective loading of modules
reduces the kernel’s memory footprint and reduces
complexity when the modules are not needed. When
modules are loaded dynamically, their init function
is called which is the entry point for the module to
register itself to various kernel APIs.

Frontswap API The Linux memory manager de-
cides when and which pages to swap out when the
number of available pages hits a certain threshold. It
offers each page to the register swap caches through
the ‘frontswap’ api until one accepts. When the mod-

Figure 1: High level diagram of the UPMEM PIM
architecture

ule is loaded, the module registers itself as a page
swap cache through the frontswap API. Each time a
page is to be swapped out, the kernel will offer it to
each registered cache in turn. Each cache has the op-
tion of accepting (i.e. caching) the page, or rejecting
it. If all cache modules reject the page, it is written
to a swap device without being cached. When a page
is to be swapped in, the kernel will ask each cache if it
has the page in question. Each page is accompanied
by a unique identifier.

Processing In Memory Processing in memory
has a wide range of designs and implementations. My
experiments are based on the UPMEM design, which
is shown in figure 1. The following is a brief descrip-
tion of the major architectural points. This design
embeds a simple, 32-bit, in-order processor (known
as a DPU) with every 64MB slice of DRAM. Each
DPU has exclusive access to its own DRAM (i.e. no
other DPU may access this memory), although the
DRAM may also be accessed by the host through the
DDR interface. Due to the way 8-bit DRAM chips are
attached to the 64-bit wide DDR bus, the DPUs are
most efficiently controlled one rank at a time (8 chips
= 64 DPUs). There is a access control which arbi-
trates access to the DRAM between the DPU (inter-
nal) and host (external), which also operates at rank
granularity. The DPU can only directly access mem-
ory in the 64KB private SRAM. Any data that resides
in DRAM must be first copied (with an explicit DMA

2

fetch instruction) into SRAM. The DMA can move
8 bytes per cycle and stalls the processor during the
copy. Since the processor is a simple in-order design
with no prefetch, it is implemented as a barrel proces-
sor with multiple threads (called tasklets) to hide the
latency. The DPU switches to the next (unblocked)
tasklet every cycle, skipping over any tasklets that
are waiting for a DMA transaction to complete.

3 Related Work

Existing Linux Solutions (1) zswap - in-kernel
compressed cache for swapped pages. Zswap oper-
ates using the same API as our solution, and can
compress pages using the same algorithms. Since the
frontswap API supports multiple swap caches, zswap
and PIM-swap could potentially be used at the same
time. There is only a single zswap instance per ma-
chine, which means it is a point of serialization in
the swap process. Zswap’s allocator is called zpool.
Zswap’s page directory is a red-black tree (separate
trees for each swap device).

(2) zram - a compressed, general purpose RAM
disk. This is not a cache like zswap, but is a virtual
storage device that compresses contents on-the-fly.
It can be used as standalone swap device, or just a
RAM disk (more use cases than zswap). The disk ad-
vertises a maximum uncompressed size, but it takes
memory dynamically according to need. Zram could
potentially be used as a backing device for zswap (or
PIM-swap), although I don’t know why you would
want to do that.

Other Approaches One obvious solution is to
swap to faster (usually flash-based) devices (SSD,
NVMe). While faster, these devices are still much
slower than RAM so it does not really solve the prob-
lem. Flash also tends to wear out quickly, which
makes it not well suited for a swap device[15].

People have experimented with swapping to other
machines over a network[9, 12, 13]. That works much
better than local storage devices but depends on the
availability of RAM on another machine nearby. If
both machines are fully utilizing their local memory,

Figure 2: Overview

then the memory manager must fall back to using a
local swap device.

4 Design

I have implemented a page swap module called PIM-
swap, which is much like zswap but with PIM sup-
port. The module gets requests from the Linux mem-
ory manager through the frontswap API to load, store
or invalidate pages. Each page request is accompa-
nied by a unique identifier which is used by the mod-
ule for bookkeeping (i.e. finding the stored page).
The module has two main components: the allocator
which is responsible to manage the storage space, and
the directory which is used to find stored pages dur-
ing load or invalidation. Both of these components
run on the DPU. The PIM-swap module operates on
a single full rank of DPUs (64). It assigns pages to a
DPU based on the lower 6 bits of the unique identi-
fier (64 values), which is designed to maximize par-
allelism across a single scheduled hardware unit (the
rank).

Page buffering Swapped pages are buffered in
RAM order to increase parallelism in the rank by
activating multiple DPUs simultaneously. There is a
separate buffer for stored pages and for loaded pages,
but they are constructed and used in the same way.
Each buffer consists of 64 descriptors - one for each
DPU in the rank, and a bitmap to check if a slot

3

is free. Each descriptor holds a 4KB uncompressed
page, the page ID and a status word.

Store During a store, the descriptor for the cor-
responding page ID is filled with the page contents
and ID, if the descriptor is empty. The function can
return immediately in this case, without writing any-
thing to the DPUs. In the optimal case, this will oc-
cur 63 out every 64 stores. If the descriptor is already
marked as used, a commit is triggered for the entire
rank. When the rank is committed, all of the filled
descriptors are copied to the DPU memory, and the
corresponding DPUs are launched. Each DPU is then
responsible for compressing its incoming page, and
finding a place to store it in its DRAM. Since multiple
DPUs are operating in parallel, the average latency
of a store is relatively low (amortized across all active
DPUs in the rank). The details about the compres-
sion, allocation and storage are explained later in this
section.

Load A load is the reverse process of a store. The
page ID is sent to the DPU, which looks up the page,
decompresses the contents and returns the page. The
page is copied from DPU memory, and returned to
the kernel. Reading multiple pages in a single op-
eration may provide further optimization and this is
more fully described later in this section.

4.1 Allocator

The purpose of the allocator is to manage free stor-
age space and provide a storage location of the cor-
rect size, on request. When a page is to be stored,
the module must be able to allocate space to store
the page. In general, an allocator may have variable
size allocations (like malloc) or fixed size (like a block
device such as a disk). To determine the best con-
figuration for the allocator, we are interested in its
efficiency in both space and time. First I give a brief
comparison of fixed size vs. variable size allocation
schemes. Following that is the result of an empirical
evaluation of 2 ’space’ metrics: the efficiency of the
allocated space, and the efficiency of the total used
space.

Comparison with a file system This is not un-
like a file system on a hard disk that allocates sectors
for files. It may be possible to reuse a simple file
system (i.e. FAT-16) for this purpose, but there are
some important differences from the general file sys-
tem use case that allows us to simplify the design even
further. A complete file system has several features
that are not necessary in a swapper: we don’t have
filenames, timestamps, extended attributes, dynamic
resizing of files, or file locking. All of these features
that are necessary in a full file system (even a sim-
ple one such as FAT) would only add complexity and
reduce performance in our system.

Another important differentiating feature from a
file system is the lifespan and usage of a stored ob-
ject. In a file system, files may change sizes (grow or
shrink) which means they need to have dynamically
allocated space (usually implemented as chaining or
extents). This is complicated to implement and hard
to get right. It is also completely unnecessary in my
case since a page can neither shrink nor grow once it
is written.

Fixed-size allocation Fixed-size allocators al-
ways return blocks of the same size. This is often used
in situations in which the media is not byte accessible,
such as flash pages (often 4KB) or disk blocks (often
512B). Since our media (DRAM) is byte addressable,
it is not immediately obvious why a fixed-size alloca-
tor is right choice. The subsequent explanations show
that for the particular architecture I am modeling, it
is more useful to view DRAM as a slow block device
rather than random access, byte-addressable mem-
ory.

Variable-size allocation Variable size allocators
are used when the free space (heap) is extremely
large, and is therefore more efficient to manage with
ranges rather than individually indexed blocks. The
ranges are kept in a list, which must be searched lin-
early when looking for free space. Each range usually
encodes its size in a hidden header at the beginning
of the allocated space. In our case, that is not con-
venient since we would not know how large the range
is (i.e. how much data to read in the DMA transfer)

4

until the header is read and interpreted. This kind
of allocator can also lead to fragmentation (unusable
portions of memory) when ranges are removed and
leave holes that are too small to be filled by new
write requests. The design is also constrained by
the DMA hardware which limits the minimum trans-
ferrable size to 8 bytes (with 8 byte alignment). I can
therefore think of a variable size allocator as a spe-
cial case of a fixed size allocator, with an 8-byte block
size. The main difference is that a fixed-size allocator
would use a bitmap to track the free blocks, while a
variable size allocator would use a list of ranges. The
’storage’ paragraph explains why the bitmap is more
efficient for this architecture.

Efficiency of Allocated Space This metric mea-
sures how many bytes are actually being used out
of the number of bytes allocated. This tells us how
much space is being wasted on average in each allo-
cation for a page. This number is influenced by the
block size, because smaller blocks limits the potential
waste. There is a tradeoff, because a smaller block
size implies a larger number of blocks given a fixed
amount of addressable space. More blocks requires
more bits in the address and larger tables for man-
aging the storage space. Figure 3 shows a compar-
ison of the average utilization of allocated memory
with different block sizes. There is a clear trend of
decreasing utilization as the block size grows, which
confirms the intuition that a larger block size has a
larger potential for unused space. This is reflected
in the number of stored (compressed) pages as well.
An allocator with 2048-byte blocks stores nearly 20%
fewer pages as compared to a 64 byte block (28248 vs
34156). Therefore, a design goal is to find the balance
between a minimal block size, and low management
overhead that increases with the number of blocks.

Efficiency of Total Space The second metric (ef-
ficiency of the total used space) measures the effect
of fragmentation - the number of unused blocks that
appear after deletions leave ”holes” in the contigu-
ous space. This effect can only been seen over a long
time, after many inserts and deletes are performed
on the data. Even after tests with over 200000 oper-

Figure 3: Average utilization of allocated memory
with different block sizes

Figure 4: Multi-level bitmap allocator

ations (300 seconds), there is hardly any fragmenta-
tion observed (less than 2% unusable blocks) across
all block sizes. A small variation is seen with larger
blocks having slightly lower rates but this does not
have any significant effect since the variation is so
small.

Storage The design of the block allocation table
is influenced by the microarchitecture of the DPU.
With only a 64KB scratchpad, only small blocks
may be moved at a time (no more than 2KB), and
the time to fetch a block increases linearly with the
size. Even with dedicated DMA engines, a low DPU
clock speed and a private bus, fetching data from
DRAM is expensive. To minimize the time required
to find an empty block, I must minimize the number

5

of data movement operations. To find a free block as
quickly as possible, I use a two level bitmap alloca-
tor. Single level bitmap allocators have been used to
improve performance over other structures in stan-
dard C++ libraries[4], storage applications[11] and
file systems[8, 16]. Bitmaps work well with fixed-size
blocks because the index of a bit in the bitmap can be
calculated directly from the block number (and vice
versa). Figure 4 shows the structure of the two level
bitmap allocator with a 1KB block size. The bottom
level (L2) represents each block with one bit.

bits =
storage size(bytes)

block size(bytes) ∗ 8(bits per byte)

A two level bitmap allows the allocator to skip over
large groups of blocks that are already allocated. The
upper level (L1) bitmap uses one bit to represent sec-
tions of 64 bytes in the L2 bitmap. Therefore, a sin-
gle bit in the L1 can tell if there are any blocks free
in a 512 block region. This ratio was chosen so the
L1 bitmap could be loaded from DRAM as quickly
as possible while still covering relatively small sec-
tions in the L2. The worst case for an allocation oc-
curs when there are no runs of contiguous blocks to
satisfy the allocation, but every section has at least
one empty block (i.e. the L1 bitmap is completely
empty). In that case, we must load every section of
the L2 bitmap.

4.2 Page Directory

The purpose of the page directory is to find a stored
page during a load operation. Since the allocator al-
ways allocates contiguous blocks for each stored page,
we can retrieve a page by knowing the index of the
first block, and the number of used blocks. It is im-
portant to have a fast lookup because the application
is stalled while waiting for the page to be swapped in.
Therefore, the primary concern is to keep retrieval la-
tency to a minimum. I have considered 3 data struc-
tures for the page directory which are briefly com-
pared below.

Hash Table A hash table is the simplest data
structure to implement. The hash function can be

performed in a constant time which makes this an
attractive solution. Since both time and space are
at a premium, I use a statically allocated hash ta-
ble (simple array). The hash table runs in to prob-
lems when taking collisions into consideration. When
there is a collision, the common solutions are chaining
and finding the next available slot. Chaining requires
dynamically allocated memory, which is complicated
and time consuming in such a constrained system.
Finding the next available slot can work with a stat-
ically allocated array but has the potential to dete-
riorate into an unordered list which no longer has a
constant lookup time (searching the whole list on a
hash miss in the worst case). Neither of these alter-
natives are particularly attractive, which encouraged
me to look at other options.

B-tree A b-tree (nobody really knows what the B
stands for) is a sorted tree that is a generalized form
of a binary tree. Where each node in a binary tree
has 2 children, a b-tree usually has more. Other (spe-
cialized) forms of b-trees include 2-3 trees and red-
black trees. B-trees are often used in file systems and
databases because they are known to be good when
parts of the tree may not be in memory and retriev-
ing them (i.e. reading from disk) is expensive. This
is comparable with DPU architecture, since the data
structure is likely not resident in the limited SRAM
and access to the DRAM takes many cycles. Like
the chaining solution in the hash table, b-trees also
require dynamic node allocation (as the tree grows).
The lookup is a bit slower (log n operations depend-
ing on the height of the tree) but has strict upper
bounds on the worst case, and will not degenerate
like the hash table.

Cuckoo Hash A cuckoo hash is a variation on
the simple hash table that uses multiple hash
algorithms[14]. Each hash algorithm is designed to
return a different entry index for the same key. Like
the simple hash, it can use a static array but differs in
the collision policy. If the first hash algorithm causes
a collision with an existing entry, another hash algo-
rithm can be used to generate a different index. If
all of the hash algorithms collide with existing en-

6

tries, one of those entries may be rehashed using an-
other algorithm and moved to an empty index, free-
ing up space for the incoming entry. This collision
avoidance policy can be time consuming and is not
guaranteed to converge. To reduce the possibility of
collisions (and infinite loops of rehashing and relo-
cating) the space in the static array should be sub-
stantially overprovisioned. In this case, I have am-
ple space reserved for the hash table (approximately
390000 entries) which is sufficient for a cuckoo hash
down to 256B block size (245760 entries). For smaller
block sizes, the number of blocks exceeds the allo-
cated space for the directory, and are therefore not
compatible with this design choice.

Compression Algorithm I am using LZO[10],
which is the same algorithm used by zswap by default.
It gives a good balance of compression ratio vs pro-
cessing complexity and is known to be quite fast[6].
LZO can compress a 4KB page from 44 bytes to 5200
bytes (dependent on the contents), with ∼1900 bytes
being the median. On a system with real PIM hard-
ware (not emulated like mine), the compression al-
gorithm would be implemented to run on the DPUs.
In my case, I use the existing Linux kernel function
since the DPUs are emulated. The algorithm can
be changed by loading a different version of the exe-
cutable into DPUs. In the future, I plan to test other
algorithms before moving to real PIM hardware.

Optimizations As noted in the paragraph on com-
pression, sometimes the compressed results are larger
than the original page. In this case, I store the un-
compressed page instead. Even in the case that the
compressed page is smaller but uses the same number
of blocks, I store the uncompressed page. This small
optimization saves time during load by not having
to decompress the page, without wasting additional
storage space.

Another optimization that I mentioned earlier is
reading multiple pages (one from each DPU) dur-
ing a load. This is based on the observation that
Linux swaps pages in and out in batches with se-
quential identifiers. The intuition is that a program
(or portion of a dataset) is swapped out because it

has not been used recently. When that program is
later scheduled to run, the OS must then swap in the
same portions that were swapped out, leading to se-
quential regions being swapped together. By reading
multiple pages from sequential identifiers, the cache
acts like a kind of prefetcher. Even if the hit rate
is very low from the prefetched pages, it may be a
huge success since the latency drops to nearly noth-
ing by copying a page that is already uncompressed
and waiting in memory. The cost is also minimal
since we are already waiting for a single page to be
decompressed (on-demand) and the DPUs operate in
parallel. The additional cost is also minimal since
the memory movement overhead is already covered
by moving the single page.

4.3 PIM Simulator

In a system with real PIM-enabled memory, the PIM
hardware is controlled by the PIM-swap module. In
the interests of expediency, I have not experimented
on a system with real hardware, and opted to sim-
ulate the hardware instead. There are several chal-
lenges when working on real hardware that are not
necessary to overcome within the scope of this work
(focused on the allocation of memory). For example,
the in-kernel API is not as clear and well-documented
as the userspace API. Because this is implemented
as a kernel module, there is also a challenge of ex-
perimenting with the same machine that is used for
development. Any small bug in the kernel module
can destabilize the system, leading to lengthy reboots
which slows down development. An alternative ap-
proach would have been to work in userspace on real
hardware, but simulate the kernel paging mechanism.
I believe running a real application and simulating
the memory model of the machine in a simulated
kernel would have been much more challenging and
error prone. It would have necessitated reverse engi-
neering the Linux kernel paging mechanism to under-
stand the intricacies of the algorithm, and then faith-
fully reproducing it in a simulator. It may also have
been possible to generate ”swap traces” by recording
the activity of an unmodified kernel as it experiences
memory pressure, and then replaying these traces in
a simulator. My approach allows testing the appli-

7

cations ”live” in a variety of configurations without
having to record traces and without dealing with new
hardware. I simulated the fundamental components
of the PIM architecture as well as the API that a nor-
mal application would use to interface with it. The
actual code that runs (i.e. DPU application) is com-
piled as part of the kernel module (x86 64 Linux code
in C) but in separate functions that are only called as
part of the DPU execution model. That means the
simulation is able to test functionality but not timing
since it executes on the same CPU as the rest of the
kernel module whereas true DPU code would run in
many separate processors of a different ISA.

API I chose to emulate the published userspace
API from UPMEM for a few reasons. I am already
well familiar with its use and the API is well doc-
umented on their website. I also believe the kernel
API should follow the userspace API quite closely but
likely includes additional details that are not neces-
sary for my purposes at this time, and would only
complicate the implementation. I only had to imple-
ment about 10 functions which are used for control-
ling the DPUs, and for moving data between DPU
memory and host memory. The API allows for mov-
ing data by variable name (as would be exposed by
symbol names in the DPU program’s ELF executable
file), which presented a small challenge. To address
this, I created a struct that represented DPU mem-
ory, with each global variable as a field in the struct.
By using the offsetof compiler intrinsic, I was able to
simulate access to DPU memory by variable name.

DPU The main features that I simulate are the
memories and execution model. The memories are
allocated as kernel memory when the DPUs are allo-
cated through the API. The size of the DRAM and
SRAM available to the DPU are controlled by macros
(i.e. can be altered by recompiling the module) so it
is possible experiment with different memory sizes
which is quite useful during debugging. The state of
the DPUs is held in an array. The DPUs are executed
sequentially (rather than in parallel as in real hard-
ware) but this is equivalent since there is no com-
munication allowed between DPUs. The only syn-

chronization points are when the DPUs are launched
and when they complete. I only allow synchronous
operation at this time (the real API allows for asyn-
chronous operation). The tasklets for each DPU are
also executed sequentially. This is potentially more
problematic since in the real hardware the tasklets
may communicate and have dependencies. In my par-
ticular code, I only use a single tasklet which avoids
this problem (possibly at the expense of performance
in a real system).

5 Evaluation

5.1 Methodology

All tests were performed using a Linux kernel (v5.1)
in Buildroot environment. The buildroot environ-
ment was hosted by a virtual machine (QEMU +
KVM) on an x86 64 machine with 8GB of physical
memory. I configured the virtual machine to have
2GB of physical memory and a 1GB swap partition
which was backed by a virtual file on the host. All
output was monitored and recorded through a virtual
serial port in the virtual machine.

The experiments were performed with the stress-
ng[7] tool. The tool starts a number of processes
that consume a specified amount of memory, stressing
the memory subsystem which causes paging. The
majority of the tests used the following command:

stress-ng -vm 2 --vm-bytes 2200M --timeout 300s

6 Conclusion

Using PIM as a swap cache has many advantages, but
has many design points that need to be explored be-
fore settling on a final design. The design is heavily
dependent on the fundamentals of the PIM architec-
ture, including amount of DRAM available to each
processor as well as the algorithms used for allocation
and page directory. The system that was tested in
this report has 64MB of DRAM, which must be parti-
tioned into storage space and directory space accord-
ingly. Through experimentation, I show that a fixed-
size block allocator with a 256 byte block size gives a

8

good compromise between space efficiency (94.5%)
and total number of blocks (245760) which fits into
the available space for the directory. With this block
size, the average case number of operations required
to look up a stored page is reasonable. Further study
is required to measure the performance of the design
to show the overall benefit of PIM vs. a purely RAM
based approach.

References

[1] F. Devaux. The true processing in mem-
ory accelerator. In 2019 IEEE Hot Chips
31 Symposium (HCS), pages 1–24, Los Alami-
tos, CA, USA, aug 2019. IEEE Computer
Society. doi: 10.1109/HOTCHIPS.2019.
8875680. URL https://doi.ieeecomputersociety.
org/10.1109/HOTCHIPS.2019.8875680.

[2] F. Douglis. The compression cache: Using
on-line compression to extend physical mem-
ory. In USENIX Winter 1993 Conference
(USENIX Winter 1993 Conference), San Diego,
CA, Jan. 1993. USENIX Association. URL
https://www.usenix.org/conference/usenix-
winter-1993-conference/compression-cache-
using-line-compression-extend-physical.

[3] M. Freedman. The compression cache: Vir-
tual memory compression for handheld comput-
ers. 2000. URL https://www.cs.princeton.edu/
∼mfreed/docs/6.033/compression.pdf.

[4] GCC. The GNU C++ Library. Free
Software Foundation, 2021. URL
https://gcc.gnu.org/onlinedocs/libstdc++/
manual/bitmap allocator.html.

[5] S. Jennings. zswap. 2021. URL https://www.
kernel.org/doc/html/latest/vm/zswap.html.

[6] I. Johnson. Why lzo was chosen as the
new compression method. 2020. URL
https://snapcraft.io/blog/why-lzo-was-chosen-
as-the-new-compression-method.

[7] C. I. King. stress-ng: A stress-testing
swiss army knife. Oct 2019. URL

https://elinux.org/images/5/5c/Lyon-stress-
ng-presentation-oct-2019.pdf.

[8] B. Matthews. Homework Solutions. Truman
State University, 2021. URL http://matthews.
sites.truman.edu/files/2017/01/chapter12.pdf.

[9] T. Newhall, E. R. Lehman-Borer, and B. Marks.
Nswap2l: Transparently managing heteroge-
neous cluster storage resources for fast swap-
ping. In Proceedings of the Second Interna-
tional Symposium on Memory Systems, MEM-
SYS ’16, page 50–61, New York, NY, USA, 2016.
Association for Computing Machinery. ISBN
9781450343053. doi: 10.1145/2989081.2989107.
URL https://doi.org/10.1145/2989081.2989107.

[10] M. F. Oberhumer. Lzo. Mar 2017. URL http:
//www.oberhumer.com/opensource/lzo/.

[11] N. Ojha. Rhcs 3.x - backport and make default
bluestore allocator as bitmap. 2019. URL
https://bugzilla.redhat.com/show bug.cgi?id=
1728069.

[12] J. Oleszkiewicz, L. Xiao, and Y. Liu. Parallel
network ram: Effectively utilizing global clus-
ter memory for large data-intensive parallel pro-
grams. In Proceedings of the 2004 International
Conference on Parallel Processing, ICPP ’04,
page 353–360, USA, 2004. IEEE Computer So-
ciety. ISBN 0769521975.

[13] J. Ousterhout, P. Agrawal, D. Erickson,
C. Kozyrakis, J. Leverich, D. Mazières, S. Mi-
tra, A. Narayanan, D. Ongaro, G. Parulkar,
M. Rosenblum, S. M. Rumble, E. Stratmann,
and R. Stutsman. The case for ramcloud. Com-
mun. ACM, 54(7):121–130, July 2011. ISSN
0001-0782. doi: 10.1145/1965724.1965751. URL
https://doi.org/10.1145/1965724.1965751.

[14] R. Pagh and F. F. Rodler. Cuckoo hash-
ing. J. Algorithms, 51(2):122–144, May 2004.
ISSN 0196-6774. doi: 10.1016/j.jalgor.2003.12.
002. URL https://doi.org/10.1016/j.jalgor.2003.
12.002.

9

https://doi.ieeecomputersociety.org/10.1109/HOTCHIPS.2019.8875680
https://doi.ieeecomputersociety.org/10.1109/HOTCHIPS.2019.8875680
https://www.usenix.org/conference/usenix-winter-1993-conference/compression-cache-using-line-compression-extend-physical
https://www.usenix.org/conference/usenix-winter-1993-conference/compression-cache-using-line-compression-extend-physical
https://www.usenix.org/conference/usenix-winter-1993-conference/compression-cache-using-line-compression-extend-physical
https://www.cs.princeton.edu/~mfreed/docs/6.033/compression.pdf
https://www.cs.princeton.edu/~mfreed/docs/6.033/compression.pdf
https://gcc.gnu.org/onlinedocs/libstdc++/manual/bitmap_allocator.html
https://gcc.gnu.org/onlinedocs/libstdc++/manual/bitmap_allocator.html
https://www.kernel.org/doc/html/latest/vm/zswap.html
https://www.kernel.org/doc/html/latest/vm/zswap.html
https://snapcraft.io/blog/why-lzo-was-chosen-as-the-new-compression-method
https://snapcraft.io/blog/why-lzo-was-chosen-as-the-new-compression-method
https://elinux.org/images/5/5c/Lyon-stress-ng-presentation-oct-2019.pdf
https://elinux.org/images/5/5c/Lyon-stress-ng-presentation-oct-2019.pdf
http://matthews.sites.truman.edu/files/2017/01/chapter12.pdf
http://matthews.sites.truman.edu/files/2017/01/chapter12.pdf
https://doi.org/10.1145/2989081.2989107
http://www.oberhumer.com/opensource/lzo/
http://www.oberhumer.com/opensource/lzo/
https://bugzilla.redhat.com/show_bug.cgi?id=1728069
https://bugzilla.redhat.com/show_bug.cgi?id=1728069
https://doi.org/10.1145/1965724.1965751
https://doi.org/10.1016/j.jalgor.2003.12.002
https://doi.org/10.1016/j.jalgor.2003.12.002

[15] T. Song, G. Lee, and Y. Kim. Enhanced
flash swap: Using nand flash as a swap de-
vice with lifetime control. In 2019 IEEE In-
ternational Conference on Consumer Electronics
(ICCE), pages 1–5, 2019. doi: 10.1109/ICCE.
2019.8662047.

[16] L. Technologies. Ntfs file system. URL https:
//www.ntfs.com/exfat-allocation-bitmap.htm.

10

https://www.ntfs.com/exfat-allocation-bitmap.htm
https://www.ntfs.com/exfat-allocation-bitmap.htm

	Introduction
	Background
	Related Work
	Design
	Allocator
	Page Directory
	PIM Simulator

	Evaluation
	Methodology

	Conclusion

