Revelation or Hubris? Using Pharmacogenetics to Forecast Atazanavir-Associated Jaundice Celia Culley BSP ACPR Doctor of Pharmacy Student University of British Columbia January 31, 2013 # Atazanavir (ATV) - Protease inhibitor - 2011 BC Centre for Excellence Adult Guidelines - First line agent (in combo with 2 nRTIs) - Combine with low dose ritonavir 3 ### Atazanavir (ATV) - Drug interactions - Inhibits UGT enzymes - 1A1, 1A3, 1A4 - · Adverse effects - Benign accumulation of unconjugated bilirubin - Elevated bilirubin: 44% - Jaundice or scleral icterus: 5% **Jaundice** #### **Genetics Review** - Allele: particular form of a gene - Genotype: genetic information determining the phenotype - Phenotype: observed trait - Wild-type: normal/common allele - Homozygous: alleles at a given locus are identical - Heterozygous: alleles at a given locus are different (ie. different on maternal and paternal copy of the gene) - Haplotype: closely linked group of alleles Chapter 61: Principles of Human Genetics. Harrison's Principles of Internal Medicine. 18th ed. 2012 # Gilbert's Syndrome (UGT1A1*28) - Polymorphism in the UGT1A1 promoter region - Reduced UGT expression - Benign unconjugated hyperbilirubinemia - Allelic frequency: ~40% - Homozygous prevalence: 7 to 19% - Varies by ethnicity - Exacerbated by triggers - Stress, infection, drugs # Pharmacogenetic (PGx) Testing - Goal: Personalized drug therapy - Definition: Test for clinical use intended to provide information that may aid in selection of certain therapeutics - May also aid in dosage selection | Р | Adult patients with HIV initiating or receiving ATV boosted or unboosted with ritonavir | |---|--| | I | UGT1A1*28 allele (homozygous or heterozygous) | | С | No UGT1A1*28 polymorphism (wild-type) | | 0 | Safety *Bilirubin concentrations *Incidence of jaundice *Discontinuation due to hyperbilirubinemia Efficacy *Difference in viral load suppression, CD4+ count Cost | | | Search Strategy | | |--------------|---|----| | Databases | Medline, Embase, Cochrane, Google, Google
Scholar, International Pharmaceutical Abstracts,
Clinicaltrials.gov | | | Search Terms | Glucuronosyltransferase, glucuronosyltransferase 1A1, UGT, atazanavir, atazanavir plus ritonavir, polymorph\$ | | | Limits | Humans, English, HIV patients | | | Results | 7 cohort studies •6 full manuscripts •1 abstract | | | | • | 13 | Association of Pharmacogenetic Markers with Premature Discontinuation of First-line Anti-HIV Therapy: An Observational Cohort Study Rubin Lubomirov,^{1,8} Sara Colombo,^{1,8} Julia di Iulio,¹ Bruno Ledergerbor,² Raquel Martinez,¹ Mathias Cavassini,² Bernard Hirschel,⁴ Enos Bernasconi,⁵ Luigia Etzi,⁶ Pietro Vernazza,² Hansjakob Furrer,⁸ Huldrych F. Günthard,³ Amalio Telenti,¹ and the Swiss HIV Cohort Study The Journal of Infectious Diseases 2011;203:246-257 | | Lubomirov R et al. 2011 | |--------|--| | Design | Retrospective cohort (total cohort n=577) | | P | 121 adult HIV patients, antiretroviral-naïve
Initiating on ATV/r 300 mg/100 mg
Total cohort demographics: Median age 44 yrs, 80% Caucasian, CD4+ 209
cells/µL, Viral load 4.9 log ₁₀ copies/mL | | 1 | Homozygous UGT1A1*28 | | С | Heterozygous UGT1A1*28
Wild-type UGT1A1*28 | | 0 | ATV discontinuation rate at 1 year
Reason for discontinuation | #### Lubomirov R et al. Results | UGT1A1
Genotype | N | Drug
Discontinuation
at 1 Year (%) | |---------------------------|-----|--| | Wild-type or heterozygous | 103 | 19 (18) | | Homozygous | 18 | 11 (61) | Lubomirov R et al. Results | UGT1A1 Genotype | Adjusted HR (95% CI) for drug discontinuation | |-----------------|---| | Wild-type | 1 (Reference) | | Heterozygous | 1.97 (0.77 – 5.03) | | Homozygous | 9.13 (3.38 – 24.69) | Only statistically significant reason for discontinuation: "Drug-associated toxicity" Genetic Factors Influencing Severe Atazanavir-Associated Hyperbilirubinemia in a Population with Low UDP-Glucuronosyltransferase 1A1*28 Allele Frequency Wan Beom Park,* Pyoeng Gyun Choe,* Kyoung-Ho Song, Jae Hyun Jeon, Sang Won Park, Hong Bin Kim, Nam Joong Kim, Myoung-don Oh, and Kang Won Choe Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea Clinical Infectious Diseases 2010;51(1):101-106 Park WB et al. 2010 Design | Prospective cohort 129 adult Korean HIV patients starting on ATV 400 mg/day (May 2005 - April 2007) Median age 39 years, 91% male, CD4+ 261 cells/μL, Viral load 4490 copies/mL, bilirubin 12.9 μmol/L Homozygous or heterozygous UGT1A1*28 С Wild-type UGT1A1*28 0 Hyperbiliribunemia at 3 months | Park WB et al. Results | | | | | |------------------------|------------|-------------------------|-----------|--| | | No (%) of | Hyperbilin
no (%) of | | | | Genotype | patients | Any grade | Grade 3-4 | | | UGT1A1*28 | | | | | | _ Wild-type | 103 (79.8) | 77 (74.8) | 16 (15.5) | | | Heterozygous | 25 (19.4) | 22 (88.0) | 10 (40.0) | | | Homozygous | 1 (0.8) | 1 (100) | 1 (100) | | | | | | 20 | | Gilbert Syndrome and the Development of Antiretroviral Therapy—Associated Hyperbilirubinemia Margalida Rugue? Patrick Taffe? Gabriela Bleiber? Huldrych F. Günthard? Hansjakob Furrer.* Pietro Vermazza.* Henning Drechaler.* Ernos Bernasconi.* Martin Riccenbach.* Amalio Telenic,* and the Swirss HIV Cohort Study The Journal of Infectious Diseases 2005; 192:1381—6 | | Rotger M et al. 2005 | | |------------|---|----| | Design | Prospective cohort | | | Population | N=21
Already receiving ATV/r 300/100 mg
Median age 38.3, 80.2% male, 95.8% Caucasian | | | Endpoints | Grade of hyperbilirubinemia | | | Results | Grade 3 hyperbilirubinemia:
Wild-type: 4/8 (50)
Heterozygous: 3/8 (37.5)
Homozygous: 5/5 (100) | | | | | 22 | # Rotger M et al. 2005 - Control group! - Bilirubin concentrations when the same subjects were not receiving ATV - Multivariate analysis: | Effect | †bilirubin by | |--|---------------| | Homozygous *28 (regardless of ATV) | 1.58µmol/L | | Receiving ATV (regardless of genotype) | 2.69umol/L | - Conclusion: - Effect of drug is greater than effect of genotype --- # Gilbert's Disease and Atazanavir: From Phenotype to UDP-Glucuronosyltransferase Haplotype 24 #### Lankisch TO et al. 2006 | Design | Retrospective cohort | |------------|---| | Population | N=106 adult HIV patients
Antiretroviral-naïve | | | Initiating on ATV/r 300 mg/100 mg | | | Initiating on ATV/r 300 mg/100 mg
Median age 45 yrs, 83% male, 92.5% Caucasian
Total bilirubin 10µmol/L | | Endpoints | Hyperbilirubinemia at 30 days | | | | ## Lankisch TO et al. Results Hyperbilirubinemia at 30 days | | Any Grade
(%) | Grade 3 – 4
(%) | Grade 4
(%) | |-------------------|------------------|--------------------|----------------| | Overall | 90/106 (84.9) | 39/106 (36.8) | 6/106 (5.7) | | Wild-
type | 31/40 (77.5) | 9/40 (22.5) | 0/0 (0) | | Hetero-
zygous | 37/43 (86.0) | 12/43 (27.9) | 0/0 (0) | | Homo-
zygous | 22/23 (95.7) | 18/23 (78.3) | 6/6 (100) | ### Lankisch TO et al. 2006 - · Also assessed Haplotype: - UGT1A1*28 - UGT1A3-57G - UGT1A7-66C - UGT1A7-129K/131K - All four variants simultaneous in: - 41.2% who had grade 3 or 4 hyperbilirubinemia - 100% who had grade 4 hyperbilirubinemia - Conclusion: other variants may be involved Genetic factors influencing atazanavir plasma concentrations and the risk of severe hyperbilirubinemia Sonia Rodríguez-Nóvoa^a, Luz Martín-Carbonero^b, Pablo Barreiro^b, Gema González-Pardo^a, Inmaculada Jiménez-Nácher^a, Juan González-Lahoz^b and Vincent Soriano^b AIDS 2007, 21:41-46 20 | R | odríguez-Nóvoa et al. 2007 | |------------|--| | Design | Prospective cohort | | Population | N=118, initiating on ATV/r 300 mg/100 mg
Median age 42 yrs, 77% male, 100% Caucasian, CD4 497
cells/µL, Viral load 1.9 log ₁₀ copies/mL
Total bilirubin 13.3µmol/L | | Endpoints | Hyperbilirubinemia at week 12 | | Results | Grade 3 or 4 (%):
Wild-type: 10/53 (18)
Heterozygous: 17/57 (29)
Homozygous: 6/8 (80) | | | Odds Ratio for grade 3 or 4 hyperbilirubinemia by having at least 1 UGT1A1*28 allele: 2.96 (95% CI 1.29 - 6.78) | Switching to unboosted atazanavir reduces bilirubin and triglycerides without compromising treatment efficacy in UGT1A1*28 polymorphism carriers Laurenzia Ferraris¹, Ottavia Viganò¹, Anna Peri¹, Maciej Tarkowski¹, Greta Milani², Stefano Bonora³, Fulvio Adorni⁴, J Antimicrob Chemother 2012; 67: 2236-2242 | | Ferraris L et al. 2012 | |--------|---| | Design | Open-label, non-randomized | | P | 51 adult HIV patients, receiving ATV/r 300 mg/100 mg Median age 46 yrs, 73% male, 90% Caucasian, CD4+ 573 cells/μL, Viral load 4.9 log ₁₀ copies/mL At least grade 3 hyperbilirubinemia at baseline: Wild-type: 3/24 (13%) Heterozygous: 15/21 (71%) Homozygous: 5/6 (83%) | | I | Homozygous (n=6) or heterozygous (n=21) UGT1A1*28
Switched to ATV 400 mg | | С | Wild-type UGT1A1*28
Continued ATV/r 300 mg/100 mg (n=24) | | 0 | Bilirubin concentrations 12 months after switch CD4 count, Viral load | #### Ferraris L et al. Results | Wild-type | Baseline bilirubin
(µmol/L)
(ie. before switch)
24.6 (17.2 – 41.4) | Bilirubin at 12
months
(µmol/L)
"no change" | |--|---|--| | (n=24)
Homo- or
Heterozygous
(n=24) | 70.5 (54.1 – 98.8) | 31.4 (26.4 – 40.2) | At 48 weeks, all patients' viral load undetectable and no significant change in CD4 count #### Studies' Limitations - Small sample size - Not powered based on genotype - ?unbalanced groups - Observational - Interpretation & Consideration - ?Other alleles involved - Risks associated with: - Not using first-line HIV medication - Experiencing benign reversible hyperbilirubinemia Ribaudo H et al. 2012 Premature Discontinuation of Atazanavir/ritonavir (ATV/r) and UGT1A1 Variants in AIDS Clinical Trials Group (ACTG) Protocol A5202 Heather Ribaudo¹, Eric S. Daar², Camlin Tierney¹, Gene D. Morse³, Katie Mollan¹, Paul Sax⁴, Margaret A. Fischl⁵, Ann C. Collier⁶, David W. Haas^{*7}, and The AIDS Clinical Trials Group (ACTG) Unpublished trial (conference poster only) 24 # Ribaudo H et al. 2012 | Design | Prospective cohort (subgroup of large n=1857) | |--------|---| | Р | N=646 adult HIV patients | | | Antiretroviral-naïve, initiating ATV/r 300 mg/100 mg | | | Median age 39 yrs, 84% male, 45% Caucasian, 31% Black, 24% Hispanic, CD4 235 cells/mL, VL 4.6 log ₁₀ copies/mL | | I | Homozygous or heterozygous UGT1A1*28 or *37 | | С | Wild-type UGT1A1 | | 0 | •Time to ATV/r discontinuation for any reason | | | Positive predictive value (PPV) of homozygosity predicting | | | ATV/r discontinuation | | | •Grade 4 hyperbilirubinemia at 24 wks | Ribaudo H et al. Results ATV/r Discontinuation | | Total
Discontinuation | Bilirubin-Associated Discontinuation | | | |---------|--------------------------|--------------------------------------|--|--| | Overall | 177/646 (27.4) | 19/646 (2.9) | | | | Wild- | 66/301 (21.9) | 3/301 (1.0) | | | | Hetero- | 70/253 (27.7) | 8/253 (3.2) | | | | Homo- | 41/92 (44.6) | 8/92 (8.7) | | | •PPV of homozygosity predicting ATV/r discontinuation 13% to 32% 36 # Ribaudo H et al. Results Hyperbilirubinemia at 24 weeks | | Grade 4 (%) | |---------|--------------| | Overall | 43/646 (6.7) | | Wild- | 8/280 (2.8) | | Hetero- | 15/274 (5.5) | | Homo- | 20/92 (21.7) | #### Ribaudo H et al. Limitations - · Conference abstract only - Quality of methodology unknown - Observational - Small sample size Can we pool the results to determine how well doing a PGx test for UGT1A1*28 can predict hyperbilirubinemia? Trials looking at genotype and incidence of ≥ grade 3 hyperbilirubinemia? | Trial | Data of interest provided? | |-----------------|----------------------------| | Lubomirov | × | | Park | ✓ | | Lankisch | ✓ | | Rodríguez-Nóvoa | ✓ | | Rotger | ✓ | | Ferraris | ✓ | | Ribaudo | √ (only grade 4) | Pooling of Studies: 2x2 Table | | | Grade 3 or 4 | | | |--------|-------|--------------|-----|-------| | | | Yes | No | Total | | Homo- | Yes | 55 | 80 | 135 | | zygous | No | 122 | 814 | 936 | | | Total | 177 | 894 | 1071 | PPV = (Homozygous AND Positive Outcome) (Total n Homozygous patients) PPV = 55 / 135 = 41% | Likelihood Ratios (LR) | | | | | |------------------------|-----------|--|-------------------------------------|--| | Likelihood Ratio | | Degree LR shifts
pre-test to post-test
probability | Implication to
Practice | | | LR(+) | LR(-) | | | | | >10 | <0.1 | Large | Often conclusive change to practice | | | 5 – 10 | 0.1 - 0.2 | Moderate | Likely leads to
change | | | 2 – 5 | 0.5 - 0.2 | Small | Sometimes important | | | 1 – 2 | 0.5 – 1 | Very small | Rarely important | | | 1 | 1 | No change | No effect | | | | | | JAMA 1994;271(9):703 42 | | | | Sensitivity | Specificity | LR(+) | LR(-) | |--------------------|-------------|-------------|-------|-------| | Pooled
Analysis | 31% | 91% | 3.4 | 0.75 | Interpretation: LR(+) = small effect on post-test probability LR(-) = very small effect on post-test probability # Summary - Only small trials available to assess value of UGT1A1*28 testing to predict hyperbilirubinemia with ATV - Pooled analysis suggests - PPV = ~41% - LR suggests testing likely not helpful - Other genetic factors likely involved - Could result in HIV patient not receiving first-line protease inhibitor 44 #### **Bottom Line** - I would not recommend UGT1A1*28 testing before initiating ATV - Patient education - Monitor clinically and by bilirubin concentrations Jaundice and hyperbilirubinemia