Revelation or Hubris? Using Pharmacogenetics to Forecast Atazanavir-Associated Jaundice

Celia Culley BSP ACPR Doctor of Pharmacy Student University of British Columbia January 31, 2013

Atazanavir (ATV)

- Protease inhibitor
- 2011 BC Centre for Excellence Adult Guidelines
 - First line agent (in combo with 2 nRTIs)
 - Combine with low dose ritonavir

3

Atazanavir (ATV)

- Drug interactions
 - Inhibits UGT enzymes
 - 1A1, 1A3, 1A4
- · Adverse effects
 - Benign accumulation of unconjugated bilirubin
 - Elevated bilirubin: 44%
 - Jaundice or scleral icterus: 5%

Jaundice

Genetics Review

- Allele: particular form of a gene
- Genotype: genetic information determining the phenotype
- Phenotype: observed trait
- Wild-type: normal/common allele
- Homozygous: alleles at a given locus are identical
- Heterozygous: alleles at a given locus are different (ie. different on maternal and paternal copy of the gene)
- Haplotype: closely linked group of alleles

Chapter 61: Principles of Human Genetics. Harrison's Principles of Internal Medicine. 18th ed. 2012

Gilbert's Syndrome (UGT1A1*28)

- Polymorphism in the UGT1A1 promoter region
 - Reduced UGT expression
- Benign unconjugated hyperbilirubinemia
- Allelic frequency: ~40%
 - Homozygous prevalence: 7 to 19%
 - Varies by ethnicity
- Exacerbated by triggers
 - Stress, infection, drugs

Pharmacogenetic (PGx) Testing

- Goal: Personalized drug therapy
- Definition: Test for clinical use intended to provide information that may aid in selection of certain therapeutics
 - May also aid in dosage selection

Р	Adult patients with HIV initiating or receiving ATV boosted or unboosted with ritonavir
I	UGT1A1*28 allele (homozygous or heterozygous)
С	No UGT1A1*28 polymorphism (wild-type)
0	Safety *Bilirubin concentrations *Incidence of jaundice *Discontinuation due to hyperbilirubinemia Efficacy *Difference in viral load suppression, CD4+ count Cost

	Search Strategy	
Databases	Medline, Embase, Cochrane, Google, Google Scholar, International Pharmaceutical Abstracts, Clinicaltrials.gov	
Search Terms	Glucuronosyltransferase, glucuronosyltransferase 1A1, UGT, atazanavir, atazanavir plus ritonavir, polymorph\$	
Limits	Humans, English, HIV patients	
Results	7 cohort studies •6 full manuscripts •1 abstract	
	•	13

Association of Pharmacogenetic Markers with Premature Discontinuation of First-line Anti-HIV Therapy: An Observational Cohort Study

Rubin Lubomirov,^{1,8} Sara Colombo,^{1,8} Julia di Iulio,¹ Bruno Ledergerbor,² Raquel Martinez,¹ Mathias Cavassini,² Bernard Hirschel,⁴ Enos Bernasconi,⁵ Luigia Etzi,⁶ Pietro Vernazza,² Hansjakob Furrer,⁸ Huldrych F. Günthard,³ Amalio Telenti,¹ and the Swiss HIV Cohort Study

The Journal of Infectious Diseases 2011;203:246-257

	Lubomirov R et al. 2011
Design	Retrospective cohort (total cohort n=577)
P	121 adult HIV patients, antiretroviral-naïve Initiating on ATV/r 300 mg/100 mg Total cohort demographics: Median age 44 yrs, 80% Caucasian, CD4+ 209 cells/µL, Viral load 4.9 log ₁₀ copies/mL
1	Homozygous UGT1A1*28
С	Heterozygous UGT1A1*28 Wild-type UGT1A1*28
0	ATV discontinuation rate at 1 year Reason for discontinuation

Lubomirov R et al. Results

UGT1A1 Genotype	N	Drug Discontinuation at 1 Year (%)
Wild-type or heterozygous	103	19 (18)
Homozygous	18	11 (61)

Lubomirov R et al. Results

UGT1A1 Genotype	Adjusted HR (95% CI) for drug discontinuation
Wild-type	1 (Reference)
Heterozygous	1.97 (0.77 – 5.03)
Homozygous	9.13 (3.38 – 24.69)

Only statistically significant reason for discontinuation: "Drug-associated toxicity"

Genetic Factors Influencing Severe Atazanavir-Associated Hyperbilirubinemia in a Population with Low UDP-Glucuronosyltransferase 1A1*28 Allele Frequency

Wan Beom Park,* Pyoeng Gyun Choe,* Kyoung-Ho Song, Jae Hyun Jeon, Sang Won Park, Hong Bin Kim, Nam Joong Kim, Myoung-don Oh, and Kang Won Choe Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea

Clinical Infectious Diseases 2010;51(1):101-106

Park WB et al. 2010 Design | Prospective cohort 129 adult Korean HIV patients starting on ATV 400 mg/day (May 2005 - April 2007) Median age 39 years, 91% male, CD4+ 261 cells/μL, Viral load 4490 copies/mL, bilirubin 12.9 μmol/L Homozygous or heterozygous UGT1A1*28 С Wild-type UGT1A1*28 0 Hyperbiliribunemia at 3 months

Park WB et al. Results				
	No (%) of	Hyperbilin no (%) of		
Genotype	patients	Any grade	Grade 3-4	
UGT1A1*28				
_ Wild-type	103 (79.8)	77 (74.8)	16 (15.5)	
Heterozygous	25 (19.4)	22 (88.0)	10 (40.0)	
Homozygous	1 (0.8)	1 (100)	1 (100)	
			20	

Gilbert Syndrome and the Development of Antiretroviral Therapy—Associated Hyperbilirubinemia

Margalida Rugue? Patrick Taffe? Gabriela Bleiber? Huldrych F. Günthard? Hansjakob Furrer.* Pietro Vermazza.* Henning Drechaler.* Ernos Bernasconi.* Martin Riccenbach.* Amalio Telenic,* and the Swirss HIV Cohort Study

The Journal of Infectious Diseases 2005; 192:1381—6

	Rotger M et al. 2005	
Design	Prospective cohort	
Population	N=21 Already receiving ATV/r 300/100 mg Median age 38.3, 80.2% male, 95.8% Caucasian	
Endpoints	Grade of hyperbilirubinemia	
Results	Grade 3 hyperbilirubinemia: Wild-type: 4/8 (50) Heterozygous: 3/8 (37.5) Homozygous: 5/5 (100)	
		22

Rotger M et al. 2005

- Control group!
 - Bilirubin concentrations when the same subjects were not receiving ATV
- Multivariate analysis:

Effect	†bilirubin by
Homozygous *28 (regardless of ATV)	1.58µmol/L
Receiving ATV (regardless of genotype)	2.69umol/L

- Conclusion:
 - Effect of drug is greater than effect of genotype

Gilbert's Disease and Atazanavir: From Phenotype to UDP-Glucuronosyltransferase Haplotype

24

Lankisch TO et al. 2006

Design	Retrospective cohort
Population	N=106 adult HIV patients Antiretroviral-naïve
	Initiating on ATV/r 300 mg/100 mg
	Initiating on ATV/r 300 mg/100 mg Median age 45 yrs, 83% male, 92.5% Caucasian Total bilirubin 10µmol/L
Endpoints	Hyperbilirubinemia at 30 days

Lankisch TO et al. Results Hyperbilirubinemia at 30 days

	Any Grade (%)	Grade 3 – 4 (%)	Grade 4 (%)
Overall	90/106 (84.9)	39/106 (36.8)	6/106 (5.7)
Wild- type	31/40 (77.5)	9/40 (22.5)	0/0 (0)
Hetero- zygous	37/43 (86.0)	12/43 (27.9)	0/0 (0)
Homo- zygous	22/23 (95.7)	18/23 (78.3)	6/6 (100)

Lankisch TO et al. 2006

- · Also assessed Haplotype:
 - UGT1A1*28
 - UGT1A3-57G
 - UGT1A7-66C
 - UGT1A7-129K/131K
- All four variants simultaneous in:
 - 41.2% who had grade 3 or 4 hyperbilirubinemia
 - 100% who had grade 4 hyperbilirubinemia
- Conclusion: other variants may be involved

Genetic factors influencing atazanavir plasma concentrations and the risk of severe hyperbilirubinemia

Sonia Rodríguez-Nóvoa^a, Luz Martín-Carbonero^b, Pablo Barreiro^b, Gema González-Pardo^a, Inmaculada Jiménez-Nácher^a, Juan González-Lahoz^b and Vincent Soriano^b

AIDS 2007, 21:41-46

20

R	odríguez-Nóvoa et al. 2007
Design	Prospective cohort
Population	N=118, initiating on ATV/r 300 mg/100 mg Median age 42 yrs, 77% male, 100% Caucasian, CD4 497 cells/µL, Viral load 1.9 log ₁₀ copies/mL Total bilirubin 13.3µmol/L
Endpoints	Hyperbilirubinemia at week 12
Results	Grade 3 or 4 (%): Wild-type: 10/53 (18) Heterozygous: 17/57 (29) Homozygous: 6/8 (80)
	Odds Ratio for grade 3 or 4 hyperbilirubinemia by having at least 1 UGT1A1*28 allele: 2.96 (95% CI 1.29 - 6.78)

Switching to unboosted atazanavir reduces bilirubin and triglycerides without compromising treatment efficacy in UGT1A1*28 polymorphism carriers

Laurenzia Ferraris¹, Ottavia Viganò¹, Anna Peri¹, Maciej Tarkowski¹, Greta Milani², Stefano Bonora³, Fulvio Adorni⁴,

J Antimicrob Chemother 2012; 67: 2236-2242

	Ferraris L et al. 2012
Design	Open-label, non-randomized
P	51 adult HIV patients, receiving ATV/r 300 mg/100 mg Median age 46 yrs, 73% male, 90% Caucasian, CD4+ 573 cells/μL, Viral load 4.9 log ₁₀ copies/mL At least grade 3 hyperbilirubinemia at baseline: Wild-type: 3/24 (13%) Heterozygous: 15/21 (71%) Homozygous: 5/6 (83%)
I	Homozygous (n=6) or heterozygous (n=21) UGT1A1*28 Switched to ATV 400 mg
С	Wild-type UGT1A1*28 Continued ATV/r 300 mg/100 mg (n=24)
0	Bilirubin concentrations 12 months after switch CD4 count, Viral load

Ferraris L et al. Results

Wild-type	Baseline bilirubin (µmol/L) (ie. before switch) 24.6 (17.2 – 41.4)	Bilirubin at 12 months (µmol/L) "no change"
(n=24) Homo- or Heterozygous (n=24)	70.5 (54.1 – 98.8)	31.4 (26.4 – 40.2)

At 48 weeks, all patients' viral load undetectable and no significant change in CD4 count

Studies' Limitations

- Small sample size
 - Not powered based on genotype
 - ?unbalanced groups
- Observational
- Interpretation & Consideration
 - ?Other alleles involved
 - Risks associated with:
 - Not using first-line HIV medication
 - Experiencing benign reversible hyperbilirubinemia

Ribaudo H et al. 2012

Premature Discontinuation of Atazanavir/ritonavir (ATV/r)

and UGT1A1 Variants in AIDS Clinical Trials Group (ACTG) Protocol A5202

Heather Ribaudo¹, Eric S. Daar², Camlin Tierney¹, Gene D. Morse³, Katie Mollan¹, Paul Sax⁴, Margaret A. Fischl⁵, Ann C. Collier⁶, David W. Haas^{*7}, and The AIDS Clinical Trials Group (ACTG)

Unpublished trial (conference poster only)

24

Ribaudo H et al. 2012

Design	Prospective cohort (subgroup of large n=1857)
Р	N=646 adult HIV patients
	Antiretroviral-naïve, initiating ATV/r 300 mg/100 mg
	Median age 39 yrs, 84% male, 45% Caucasian, 31% Black, 24% Hispanic, CD4 235 cells/mL, VL 4.6 log ₁₀ copies/mL
I	Homozygous or heterozygous UGT1A1*28 or *37
С	Wild-type UGT1A1
0	•Time to ATV/r discontinuation for any reason
	Positive predictive value (PPV) of homozygosity predicting
	ATV/r discontinuation
	•Grade 4 hyperbilirubinemia at 24 wks

Ribaudo H et al. Results ATV/r Discontinuation

	Total Discontinuation	Bilirubin-Associated Discontinuation		
Overall	177/646 (27.4)	19/646 (2.9)		
Wild-	66/301 (21.9)	3/301 (1.0)		
Hetero-	70/253 (27.7)	8/253 (3.2)		
Homo-	41/92 (44.6)	8/92 (8.7)		

•PPV of homozygosity predicting ATV/r discontinuation 13% to 32%

36

Ribaudo H et al. Results Hyperbilirubinemia at 24 weeks

	Grade 4 (%)
Overall	43/646 (6.7)
Wild-	8/280 (2.8)
Hetero-	15/274 (5.5)
Homo-	20/92 (21.7)

Ribaudo H et al. Limitations

- · Conference abstract only
 - Quality of methodology unknown
- Observational
- Small sample size

Can we pool the results to determine how well doing a PGx test for UGT1A1*28 can predict hyperbilirubinemia?

Trials looking at genotype and incidence of ≥ grade 3 hyperbilirubinemia?

Trial	Data of interest provided?
Lubomirov	×
Park	✓
Lankisch	✓
Rodríguez-Nóvoa	✓
Rotger	✓
Ferraris	✓
Ribaudo	√ (only grade 4)

Pooling of Studies: 2x2 Table

		Grade 3 or 4		
		Yes	No	Total
Homo-	Yes	55	80	135
zygous	No	122	814	936
	Total	177	894	1071

PPV = (Homozygous AND Positive Outcome) (Total n Homozygous patients) PPV = 55 / 135 = 41%

Likelihood Ratios (LR)				
Likelihood Ratio		Degree LR shifts pre-test to post-test probability	Implication to Practice	
LR(+)	LR(-)			
>10	<0.1	Large	Often conclusive change to practice	
5 – 10	0.1 - 0.2	Moderate	Likely leads to change	
2 – 5	0.5 - 0.2	Small	Sometimes important	
1 – 2	0.5 – 1	Very small	Rarely important	
1	1	No change	No effect	
			JAMA 1994;271(9):703 42	

	Sensitivity	Specificity	LR(+)	LR(-)
Pooled Analysis	31%	91%	3.4	0.75

Interpretation: LR(+) = small effect on post-test probability LR(-) = very small effect on post-test probability

Summary

- Only small trials available to assess value of UGT1A1*28 testing to predict hyperbilirubinemia with ATV
 - Pooled analysis suggests
 - PPV = ~41%
 - LR suggests testing likely not helpful
- Other genetic factors likely involved
- Could result in HIV patient not receiving first-line protease inhibitor

44

Bottom Line

- I would not recommend UGT1A1*28 testing before initiating ATV
- Patient education
- Monitor clinically and by bilirubin concentrations

 Jaundice and hyperbilirubinemia

