ASSIGNMENT 7

DUE DATE: NOV 29, 2011

1) Let R be a commutative ring without zero divisors. If $a, b \in R$ and $a^{n}=b^{n}$, and $a^{m}=b^{m}$ for two relatively prime positive integers m and n, prove that $a=b$.
10pts
2) Find the greatest common divisor of $(3+4 i)$ and $(4-3 i)$ in the euclidean ring $\mathbb{Z}[i]$.

10pts
3) If U and V are ideals of R, let $U V$ be the set of all elements that can be written as a finite set of elements of the form $u v$ where $u \in U$ and $v \in V$. Prove that $U V$ is an ideal of R and that $U V \subset U \cap V$.
10pts
4) Let R be a ring with unit element. Define new operations \oplus by $a \oplus b=a+b+1$ and $a \cdot b=a b+a+b$ where $a+b$ and $a b$ are the old addition and multiplication operations in the ring R. Prove that $R^{\prime}=(R, \oplus, \cdot)$ is again a ring, write the zero element and unit elements of R.
10pts
5) Prove that the rings R and R^{\prime} are isomorphic.

