The Photoelectric effect and Photoelectron Spectroscopy

 photoelectron spectroscopy is based on *photoelectric effect*

$$\boxed{E_{\boldsymbol{k}}=h\nu-E_{\boldsymbol{b}}}$$

- binding energy of ejected photoelectrons is obtained from *kinetic energy* after ionisation
 - requires that e⁻ are not perturbed by collisions or other interactions
 - assumes that electronic structure doesn't change upon ionisation (Koopmans' theorem)
 - need to detect primary photoelectrons
 - secondary photoelectrons are useless
- PES is therefore usable for
 - surfaces (very surface sensitive vide infra)
 - gas phase samples (low concentration)

Mean Free Path of Electrons

- avg distance travelled by primary photoelectron
- depends on e^- kinetic energy \rightarrow Universal Curve
- PES is *very* surface sensitive
 - important technique for surface science
 - must be careful for bulk properties
 - worry about effects due to surface
 - defects, contamination, & charging

(not an issue for gas phase experiments)

- important sensitivity changes with photoelectron kinetic energy
 - intensities are affected by this
 - from 20-250 eV: ~ constant (5-10Å only)

MEAN FREE PATH (Å)

Experimental Considerations for Electron Detection

- electrons can't get very far
- need to know kinetic energy of primary electrons
- must do experiments in Ultra High Vacuum (UHV... <10⁻⁹ torr)
 - gas phase and/or clean surfaces
 - no solutions, no dirty surfaces, no interfaces
 - cannot withstand UHV
- electron analysers electric/magnetic fields as deflect
 - hemispherical analyzer (HSA)
 - cylindrical mirror analyzer (CMA)
- electron detectors "channeltrons"
 - a.k.a. electron channel multipler
 - create secondary electron avalanche (signal enhancement)
 - signal gain ~10⁹!

Fig. 5. Schematic of channeltron.

Chemistry 529

Sources of high-energy radiation

- Gas Arc Lamps \rightarrow e.g. Helium, Neon
 - gas 'anode' is excited by electrical discharge
 - photon emission brings gas atoms back to ground state
- X-ray arc lamps $\rightarrow e.g.$ Mg, Al
 - higher energy (X-ray) emission
 - same principle...
- Synchrotron Radiation Source
 - acceleration of relativistic electrons \rightarrow broadband light emission
 - collect photons optical energy selection

- completely tunable photon energy source
- significantly brighter source (10²-10⁸ more intense)

 $\begin{aligned} He(I) &= 21.2 eV \\ He(II) &= 40.8 eV \\ Mg\,K_{\alpha} &= 1254 eV \\ Al\,K_{\alpha} &= 1487 eV \end{aligned}$

Basic considerations of the PES experiment

- spectrum is "snapshot" of a series of one-electron *ionised* states
 - correlate with initial state of *unionised* molecule $M o M^+ + e^-$
 - Franck-Condon Principle \rightarrow i.e., Born-Oppenheimer nuclei don't have a chance to move
 - Koopmans' theorem \rightarrow electronic structure of molecule doesn't change upon ionisation

$$\begin{array}{c} \psi_1^{GS} \to a \left| \phi_A \right\rangle + b \left| \phi_B \right\rangle \\ \psi_1^+ \to c \left| \phi_A \right\rangle + d \left| \phi_B \right\rangle \end{array} \right| a = c, b = d$$

- Gives an 'energy map' of valence molecular orbitals (energies)
 - including vibrational information (in gas phase)
- can also be used to get composition of MOs (intensities)
 - atomic photoionisation cross-sections
 - *e.g.*, the gas phase spectrum of O₂
 - very high resolution
 - provides information about *electronic* and *vibrational* final states

• Gas Phase Valence Photoelectron Spectroscopy of O₂

Atomic Photoionisation Cross-Sections

- equation that defines photoionization probability $\rightarrow \sigma_{n,l} = \frac{4\pi^2 a_0^2 \alpha}{3g} h \nu |M_{if}|$
 - similar to bound-state transitions, *i.e.*, $f \propto \left\langle \Psi_i | \vec{\mu} | \Psi_f \right\rangle^2$
 - biggest difference is nature of final state
 - wavefunction of emitted photoelectron *depends on its kinetic energy*
- symmetry of final state wavefunction
 - must include both oxidized molecule + photoelectron
 - Koopmans' theorem allows us to simplify and only worry about behaviour of photoelectron
 - depends on initial state wavefunction (completely flexible always dipole allowed)

 $\frac{4}{h u^2} \left\langle \Psi_i \left| \vec{r} \right| \Psi_f \right\rangle^2$

The University of British Columbia Department of Chemistry

3.1.4 Valence Photoelectron Spectroscopy

- symmetry of photoelectron wave defined by initial AO
- λ of final state gets shorter at higher kinetic energies
 - best overlap when "matching" *photoelectron* radial distribution with orbital wavefunction → delayed maxima (*e.g.* 3*d* orbital)
 - presence of radial nodes in orbital wavefunction generally leads to destructive interference at certain photoelectron energies → Cooper minima (*e.g.* 3*p* orbital)

Molecular Photoionisation Cross-Sections

- describe molecular orbital wavefunctions as LCAO $\rightarrow \psi_{\scriptscriptstyle MO} = \sum c_i \phi_i$
- consider σ_{MO} as sum of atomic contributions $\rightarrow \sigma_{MO} = \sum c_i^2 \sigma_i$
- the cross-section of a molecular orbital is directly related to the c_i^2 from each contributing AO
 - look at changes in the PES peak intensities as a function of photon energy
 - direct probe of *initial state* molecular orbital description
 - final state wavefunction is dominated by photoelectron
 - coupling to initial state is key component to intensity
- e.g., valence PES spectra of [Cu(II)Cl₄]²⁻ and Cu(I)Cl
 - comparision of Cu(II) and Cu(I)
 - which is more covalent?
 - does this make sense?

The University of British Columbia Department of Chemistry

3.1.4 Valence Photoelectron Spectroscopy

- e.g., variable photon energy PES (VEPES) of iron chlorides
 - $[FeCl_4]^{2-}$ (near T_d HS $3d^6$ complex)
 - delayed maxima observed in 1 and RAMO
 - Fe 3*d*-character is in highest occupied MOs
 - compare with theoretical calculations

- [FeCl₄]¹⁻ (oxidized to HS 3*d*⁵ complex)
 - delayed maxima observed in peak 3
 - ligand orbitals above the metal orbitals?
 - not "normal" for TM complexes
 - normally think of metal orbitals being antibonding
 - look at theoretical description
 - spin polarization is huge \rightarrow symmetric S = $\frac{5}{2}$
 - splitting of Fe $3d_{\alpha/\beta}$ orbitals is very large
 - filled Fe $3d_{\alpha}$ drop below Cl 3p orbitals

lowest energy electronic transitions are <u>LMCT</u> transitions, and not LF transitions!

2009-W2

Resonance Effects in VEPES

- what happens when PES spectrum is taken using hv which correspond to other transitions?
- provides new pathways to reach the same ionized *final states*
 - more pathways = more intensity = enhancement of peaks
 - gives information about final states (not initial states)
- *e.g.*, looking for metal character in Fe complexes
 - look at behaviour across Fe 3p ionisation threshold (~54eV)
 - what happens?

direct PES transition:
$$|3p^{6}3d^{n}\rangle \xrightarrow{h\nu} |3p^{6}3d^{n-1}\rangle$$

indirect d - p relaxation: $|3p^{6}3d^{n}\rangle \xrightarrow{h\nu} |3p^{5}3d^{n+1}\rangle \xrightarrow{SCK} |3p^{6}3d^{n-1}\rangle$

additional pathway to same final state through *super-Coster-Kronig* (SCK) decay

- Resonance Effects in [FeCl₄]²⁻
 - we know that going from $3d^6 \rightarrow 3d^5$ causes huge electronic relaxation
 - can we see this in the *ionized final state* of the ferrous complex?
 - resonance enhancement occurs in peak 3
 - big change from $i \rightarrow f$
 - energy of Fe orbitals drops significantly
 - confirms "initial state" description of ferric species
 - resonance effects are direct indication of ionisation process and its effect on electronic structure...
 - can be very useful in understanding redox processes

55

Overall information content for Valence PES

- *binding energies* dominated by interactions with other orbitals
- photoionisation *cross-sections* give MO compositions (from initial state)
- *resonance effects* give final state compositions
- still have to worry about atomic multiplets and CT states