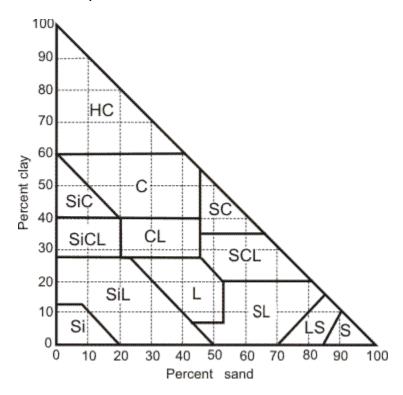
APBI 200 - LAB # 2

Section 1 – soil texture

Please answer the following questions:


- 1. Which of the following is included when determining the soil texture class?
 - a) % sand
 - b) % organic matter
 - c) % gravel
 - d) % silt
 - e) % water
 - f) % clay

[1 point]

- 2. Using the Canadian Soil Texture Triangle (Figure 2 in your lab manual) and information in the table below:
- a) Fill in all missing information in the table below.

Soil	% Sand	% Silt	% Clay	Textural class
Α	33		33	
В		17	18	
С	10	48		
D		40	20	

b) <u>Plot</u> each of the 4 soils on the soil texture triangle given below, using information about their relative percentages of sand, silt, and clay.

c) Why do we consider a loam soil ideal?

3. Specific surface area of soil mineral particles is an important property to understand. Remember the diameters of mineral soil particles, as mentioned in the lectures, are:

Coarse fragments	Fine earth fraction			
	Sand	Silt	Clay	
>2mm	0.05 - 2 mm	0.002 - 0.05 mm	<0.002 mm	

Assume that the density of quartz is 2650 kg m⁻³. Showing all calculations determine:

- a) What is the surface area SA (in m²) of a cube of quartz 0.1 mm tall?
- b) What is its volume (in m³)? What is the weight of this cube (in kg)?
- c) Calculate the specific surface area SSA (m² kg¹) for cubes of quartz 0.1 mm tall.
- d) Calculate the specific surface area SSA ($m^2 \text{ kg}^{-1}$) for cubes of quartz 1 μm (1 micrometer = $10^{-6} m$) tall.
- e) Compare the two specific surface areas. What does this simple calculation tell you about the specific surface area of sand as compared to clay? Why is this important?

[5 points]

4. You get a summer job working in the field for a forestry company. One of your tasks is to determine soil texture. Your supervisor tells you to do hand-texturing. What are the advantages and challenges with this method? Briefly explain.

[2 points]

Required attachments:

• Your hydrometer data sheet with sample calculations written out for at least one line.

[3 points]

• The particle-size distribution curve. Please do not forget to include a title and axes labels.

[2 points]

Your answers regarding the soil texture of two "mystery" samples (determined by hand-texturing).
Include a brief justification of your answer.

[4 points]

Section 2 - Soil bulk density

Please answer the following questions:

- 5. The bulk density of a soil is the:
 - a) mass of solids / volume of solids
 - b) mass of solids / total soil volume
 - c) volume of voids / total soil volume
 - d) 1 volume of voids / total soil volume

[1 point]

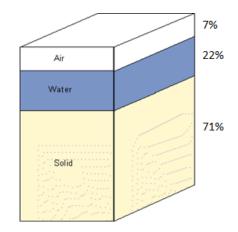
- 6. Which would be more likely to change as a result of soil compaction:
 - a) bulk density, or
 - b) particle density?

Briefly explain your answer.

[2 points]

- 7. A <u>mineral</u> soil has a bulk density of 1.54 g/cm³. Showing all calculations answer the following:
 - a) What would you assume particle density to be equal to in this soil?
 - b) Calculate the porosity (f) in %.
 - c) What would be the volume of pores (Vf) in 1 m³ of this undisturbed soil? Give the <u>formula</u> you use to determine the pore volume (Vf) and show your calculation.

[3 points]


8. Consider the following soil characteristics:

volume	154 cm ³
organic matter content	7 %
mineral content (dry)	180 g
mineral particle density	2.65 g/cm^3
Organic particle density	1.30 g/cm^3

What is the bulk density of this soil in g/cm³?

[2 points]

- 9. Consider the following mineral soil as shown on a diagram:
 - a) What is the porosity (in %) of this soil?
 - b) Assuming a particle density of 2.65 g cm⁻³, what is the bulk density of this soil in g cm⁻³? Give the equation you use, show your full calculation and units.

[2 points]

Required attachments:

• The bulk density calculation table with all calculations written out. Include all the units.

Depth of sampling	Core height (cm)	Core diameter (cm)	Volume of core (cm³)	Oven-dried wt. of soil (g)	Bulk density (g/cm³)
0 - 7.5 cm	h = 7.5 cm	d = 7.3 cm		$M_{S} = 456.7g$	

[2 points]

Total for lab 2 assignment [33 points]