
Eventually Consistent

W. Vogels

Communications of the ACM

Jan. 2009

Introduction

•  Under computing conditions involving
massive scale, requiring good performance
and availability, use:
– Consequences to using replication

•  Data consistency is affected

– Trade off between high availability and
consistency

Introduction

•  In perfect world
– Updates seen by all (consider real-time…)

•  First became issue in late 1970’s with DBs
– Distributed DBs – techniques proposed to

achieve distribution transparency
•  Better to fail than to break transparency (oh no!!)

•  In 1990s with Internet, availability more
important

CAP

– CAP theorem – only 2 of the following at same
time
•  Data consistency, system availability, tolerance to

network partitions
–  System not tolerant to data partition can achieve

consistency and availability (transactions)

» Requires client and storage systems to be part of same
environment

•  Partitions part of distributed systems so relax
consistency for availability (or vice versa)

– Client developer must be aware of trade-off

Client-side consistency

•  Range of applications can tolerate stale data
•  This is not the ACID kind of consistency

•  Client-side consistency:

– How/when processes see updates to stored
objects

– Storage system – large, distributed, guarantee
durability and availability

Client-side consistency

Assume process A R/W to data, processes B,
C independent of A, R/W to data

•  Strong consistency – subsequent accesses by
A, B, or C will return updated value

•  Weak consistency – no guarantee subsequent
accesses return updated value
– Inconsistency window – period between update

and when guarateed will see update

Client-side – eventual consistency

•  Eventual consistency – form of weak
– If no new updates, eventually all accesses return

last updated value
•  Size of inconsistency window determined by

communication delays, system load, number of
replicas

•  Implemented by domain name system (DNS)

Client-side – eventual consistency

– Variations on Eventual consistency
•  Causal consistency – If A tells B updated, access by B will

see updated value, W guaranteed to supersede earlier W.
Access by C subject of normal rules

•  R-your-W consistency – If A updates, A always sees
updated value

•  Session consistency – Process accesses storage in sessions,
R-your-W consistency guaranteed during session

•  Monotonic R consistency – once process sees a value,
never sees previous value

•  Monotonic W consistency – serializes W by same process

Client-side – eventual consistency

•  Can combine properties
– Monotonic R and R-your-W, most desirable in

eventually consistent system. Provide high
availability

– Many modern RDMSs providing primary-backup
reliability implement replication in both
synchronous and asynchronous modes
•  Synchronous part of transactions
•  Asynchronous – updates arrive delayed, through log

shipping
•  For scalable performance, RDBMSs read from back-up –

eventual consistency with inconsistency window period of
log shipping

Server-side consistency

N - number of nodes storing replicas of data
W - number of replicas needed to acknowledge receipt of

update before update completes
R - number of replicas contacted when data is read
•  If W+R>N, then W and R set overlap so can

guarantee strong consistency
–  In primary-backup RDBMS with synchronous

replication, N=2, W=2 and R=1
•  No matter which replica, always consistent

– For asynchronous replication, N=2, W=1, R=1
•  No guarantees

Server-side consistency

•  Basic quorum protocols fail when cannot write to W
nodes – unavailable
–  E.g. with N=3, W=3, if only 2 nodes available

•  For high performance distributed systems, number of
replicas > 2, e.g. N=3, W=2, R=2

•  If high read loads, N = 10s or 100s nodes, with R=1

•  If system concerned with consistency W=N
•  Systems concerned with fault tolerance but not

consistency W=1 (minimal durability on update,
lazy update to other replicas)

Server-side consistency

•  Configuration of N, W, R depends on which
performance aspect needs to be optimized
– R=1, N=W optimized for read case

– W=1, R=N, optimized for fast write, but no
durability if failure

– If W<(N+1)/2, conflicting W when W sets do
not overlap

Server-side consistency

–  Weak/eventual consistency when W+R<=N as R,W
will not overlap. Might as well set R=1 for
•  Read scaling
•  Data access more complicated

–  In key-value model, easy to determine latest version, not
true if return a set of objects
•  In such systems, lazy updates by inconsistency window
•  But can read from nodes not yet updated if (W+R<=N)

–  Achieving R-your-W, session, monotonic consistency
depends on “stickiness” of client to server
•  E.g. same server executes protocol each time

–  But more difficult for load balancing and fault tolerance
•  Sometimes client implements R-your-W and monotonic reads

by discarding reads if previous versions

Server-side consistency

•  If partitions occur within or between data
centers
– Can use classic majority quorum approach

•  Partition that has W nodes can make updates while other
partitions unavailable

•  Same for R set

•  If these two sets overlap – minority set unavailable

– Or, both sides of partition assign new set of storage
nodes, merge operation when partition heals
•  Amazon uses such W-always systems in shopping cart

Example

•  Amazon’s dynamo
– Key value storage system

– Used in e-commerce, Web services

– Allows application service owner who creates
instance of Dynamo storage systems trades-off
among
•  consistency, durability, availability and performance

Conclusion

•  Data inconsistency in large scale reliable distributed systems must be
tolerated for:
–  Improving R,W under highly concurrent conditions

–  Handling partition cases

•  Inconsistency acceptability depends on client application

–  Must be aware of consistency guarantees provided by storage system

–  Example is web site with notion of user-perceived consistency
•  Inconsistent window smaller than time expected for customer to return for next

page load

•  Need to operate at global scale

