
 Master of Software Systems Program

CICS 525 | Real-Time and Distributed Systems | May – July 2011

Assignment #2

General guidelines for homework: Before starting on this homework, review the homework guidelines
provided on the first day of class. Remember that it is encouraged to discuss the problems with others
in the class, but the assignment group only should complete all write-ups. Homework grades will be
based not only on getting the “correct answer,” but also on good writing style and clear presentation of
your solution. It is your responsibility to make sure that the graders can easily follow your line of
reasoning. Even if you can’t solve the problem, you will receive partial credit for explaining why you
got stuck on a promising line of attack. More importantly, you will get valuable feedback that will
help you learn the material. Please acknowledge the people with whom you discussed the problems
and what sources you used to help you solve the problem (e.g., books from the library).

Java RMI

The Java Remote Method Invocation (RMI) system allows an object running in one Java virtual
machine to invoke methods on an object running in another Java virtual machine. RMI provides for
remote communication between programs written in the Java programming language.

RMI applications often comprise two separate programs, a server and a client. A typical server
program creates some remote objects, makes references to these objects accessible, and waits for
clients to invoke methods on these objects. A typical client program obtains a remote reference to one
or more remote objects on a server and then invokes methods on them. RMI provides the mechanism
by which the server and the client communicate and pass information back and forth. Such an
application is sometimes referred to as a distributed object application.

Distributed object applications need to do the following:

Locate remote objects. Applications can use various mechanisms to obtain references to remote
objects. For example, an application can register its remote objects with RMI's simple naming
facility, the RMI registry. Alternatively, an application can pass and return remote object references
as part of other remote invocations.

Communicate with remote objects. Details of communication between remote objects are handled by
RMI. To the programmer, remote communication looks similar to regular Java method invocations.

Load class definitions for objects that are passed around. Because RMI enables objects to be passed
back and forth, it provides mechanisms for loading an object's class definitions as well as for
transmitting an object's data.

A more complete tutorial for using Java RMI is available from Oracle/Sun
<http://download.oracle.com/javase/tutorial/rmi/index.html>. You will use Java RMI to implement
the stock trading system you built earlier.

A Client-Server Application - Simple Stock Trading System

You must implement a stock trading client-server application using Java RMI. The application involves two
client types and one server.

Requirements

Here is a description of the functionality of your application:

1. The server keeps track of stock prices according to stock names. It returns stock prices when
queried with the name of the stock.

2. One client type can update the price of individual stocks.
3. The other client type can obtain stock prices and buy or sell stocks.
4. The server keeps track of stock prices according to stock names. It returns stock prices when

queried with the name of the stock. The server is assumed to be a non-terminating application.
5. The server also retains information about the stock owned by individual users and their cash

balance.
6. At the server, stock prices are regularly updated for those stock tickers that clients have expressed

an interest in. Initially the server is not tracking any stock. When the first client connects and
requests a quote, the server begins to track that stock, and other stocks from then onward. The
server retrieves stock prices from some online source (you can choose a method to achieve this).
The prices are updated periodically every two minutes. For every new stock that the server tracks,
it starts with 1000 shares to trade. Clients may purchase from these 1000 shares and no more.

7. The server makes all data persistent: when the server is terminated all relevant data is stored to
disk and the server restores the data when restarted.

8. Each client is associated with a user. When a client connects to the server the first message from
the client to the server is the username, which is indicated by the string USER <USERNAME>.
If the user is new, then $1000 is credited to the user and the username is added to the server’s
data set.

9. A client can query stock prices by passing the stock name. The server returns the price of the
stock if the ticker symbol is valid. A query is placed using a method like query(ticker_name).

10. Clients can also buy or sell stocks with a method like buy(ticker_name, num_stocks) or
sell(ticker_name, num_stocks). The server should verify that the user has a sufficient
balance for a buy transaction and that the user owns stock for the sell transaction. The
transactions alter the user’s cash balance appropriately.

The main requirement is to use Java RMI and invoke methods on the server using this infrastructure.
Clients therefore will obtain a reference to the server object and then invoke the appropriate methods
to update stock price and to buy/sell stocks.

Submission
You must submit your assignment using handin. The name of the course is cics525 and the
assignment name is assignment2. You must submit the following files (please use these names for
your files):

1. All source code files;
2. A makefile with compilation instructions: Makefile;
3. A readme file in plain ASCII text format: Readme.txt;
4. The readme file must contain the following information:

Lab number

Names and student numbers

Operating system

Java compiler (version)

Compilation instructions

Execution instructions

Known bugs

