Wind Turbine Blades End-of-life Challenges Pathways to Solutions

CURRENT RECYCLING SOLUTIONS

Pyrolysis

Combustion

- fibers
- / High technological readiness
- X Energy intensive
- X Low circularity³
- X Low recovery yields³

Thermal processing

Composites can be turned into energy and fibers³

X Low combustion efficiency X Toxic gas emissions

Applications: Generate fuels for energy and produce valuable fibers

EMERGING SOLUTIONS - CHEMICAL RECYCLING APPROACH

Oxidative Liquefaction⁴

Glass Epoxy Composite

Oxidative Liquefaction + Reactor

Hydrogen Peroxide

Mixture of Acids

Recovered **Glass fiber**

Transition Metal-catalyzed Method²

Recovered materials

Researchers have developed a way to disconnect the bonds between carbon and oxygen to recycle thermoset epoxy resins from wind turbine blade shells.

REFERENCES

1anagement, 62, 229–240. https://doi.org/10.1016/j.wasman.2017.02.007 nce and carbon footprint of Wind Turbine Blade Waste Management Alternatives. *Waste*

ry of fiber-reinforced polymer composites for end-of-life wind turbine blade management. Green Chemistry,

GROUP 10

Cherry M Ekaete E Hairuo L Shawn F