

Lecture outline

- Biochemical transformations
 - Example #1: Biological N fixation
 - Example #2: Mineralization / Immobilization
 - Example #3: Denitrification
- Microbe interactions with plant roots
- Plant nutrients

2

The sources of soil N are:

- Biological fixation of N₂
- Deposition of N (NO₃⁻ and NH₄⁺) compounds from the atmosphere by
- Fertilizers

Manure

Plant residues

precipitation

Addition of organic matter

Processes that are mediated by soil organisms

The losses of soil N occur through:

- · Plant removal
- Leaching
- Gaseous losses (denitrification and NH₃ volatilization)
- Erosion (wind and water)
- Ammonium fixation (clay complexes)
- Processes that are mediated by soil organisms

Example #1 - Biological fixation of N

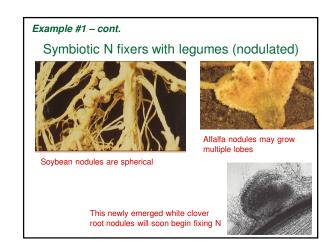
Biological conversion of N_2 to ammonia (NH $_3$) done by some bacteria, cyanobacteria, and actinomycetes

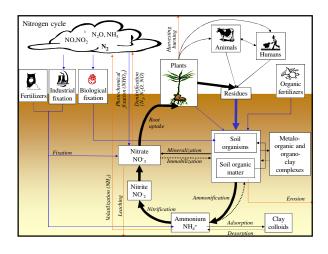
N fixing bacteria generate cellulose as they attach to the root hair 7

Example #1 - cont.

Biological N fixation

$$\stackrel{0}{N_2} + 8H^+ + 8e^- \xrightarrow{Nitrogenase} \stackrel{3-}{2N} H_3 + H_2$$


Estimated amount of N fixation in terrestrial ecosystems is ~139 million t N per year


8

Example #1 – cont.

Typical levels of biological N fixation

Crop or plant	Associated organism	Typical level of N fixation (kgN/ha/yr)
<u>Symbiotic</u>		
Legumes (nodulated)		
Alfalfa	Bacteria (Rhizobium)	150 – 250
Clover	Bacteria (Rhizobium)	100 – 150
Vetch	Bacteria (Rhizobium)	50 –150
Non-legumes (nodulated)		
Alders (Alnus sp.)	Actinomycetes (Frankia)	50 – 150
Non-legumes (non-nodulated)		
Bahia grass	Bacteria (Azotobacter)	5 – 30
Non-symbiotic		
Not involved with plants	Bacteria (Azotobacter, Clostridium)	5 - 20

Example #2

Mineralization / Immobilization

$$Organic \ N \xleftarrow{\stackrel{\textit{Mineralization}}{\longleftarrow}} \textit{Inorganic} \ N$$

12

Example #2

Mineralization:

Aminization

Protein $\longrightarrow R - NH_2 + CO_2 + E \uparrow + other products$

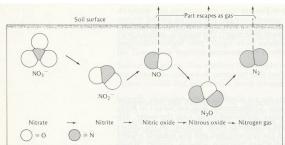
· Ammonification

$$R - NH_2 + H_2O \longrightarrow NH_3 + R - OH + E \uparrow$$

$$NH_3 + H_2O \longrightarrow NH_4^+ + OH^-$$

Nitrification

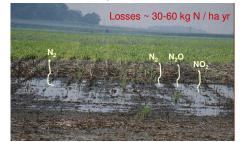
$$2NH_4^+ + 3O_2 \longrightarrow 2NO_2^- + 2H_2O + 4H^+ + E \uparrow$$
Nitrosomonas sp.
 $2NO_2^- + O_2 \longrightarrow 2NO_2^- + E \uparrow$


$$2NO_2^- + O_2 \longrightarrow 2NO_3^- + E \uparrow$$

Nitrobacter sp.

Example #2

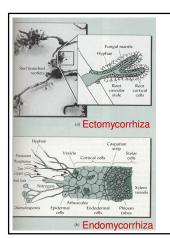
Mineralization and microbes involved

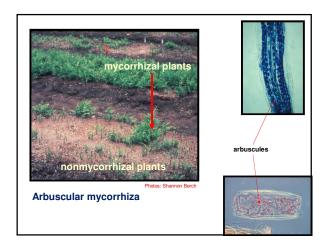

- Aminization \rightarrow heterotrophs (bacteria and fungi)
- Ammonification → heterotrophs (bacteria, actynomicetes, fungi)
- Nitrification \rightarrow chemo-autotrophic bacteria

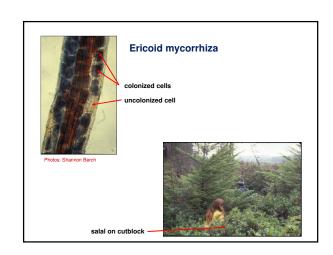
Example #3 **Denitrification** – biological reduction of NO₃- to gaseous compounds

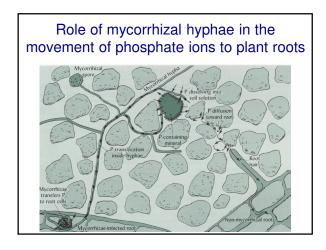

Example #3

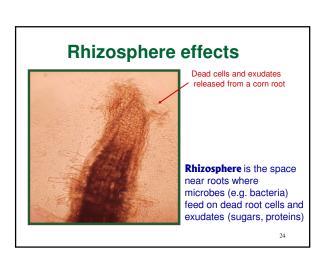
Denitrification bacteria live under anaerobic conditions, such as those in saturated, compacted soils




Mycorrhizae is a mutually beneficial, symbiotic association between plants and fungi, where fungus provides nutrients, while plant provides sugars from photosynthesis




Types of mycorrhizae:


- •<u>Ectomycorrhiza</u> with tree sp. except our 'cedars'
- •<u>Ericoid mycorrhiza</u> with Ericaceae (blueberry, salal)
- •<u>Arbuscular mycorrhiza</u> with most other plants

20

Jan/Feb 2011 issue of Canadian Geographic

How Avatar got it right: "Mother trees" use fungal systems to feed the forest – article featuring work of Dr. Suzanne Simard (Faculty of Forestry)

http://www.canadiangeographic.ca/magazine/jf11/fung al_systems.asp

25