NEW STRATEGIES FOR RECYCLING SINGLE-USE NITRILE GLOVES

Disposable gloves play a vital role in **reducing the risk of contamination** in medical facilities, food factories, and research laboratories!

65 BILLION

The number of gloves used globally every month in 2020.

Nitrile gloves release:

MICROPLASTICS

HEAVY METALS

TRACE ELEMENTS

These substances have serious negative effects on human and environmental health!

26g CO₂E The climate impact of a single nitrile glove!

Innovative recycling strategies have emerged as

opportunities to **divert waste away from landfills**.

CONVERTING WASTE GLOVES TO RENEWABLE FUEL

Co-pyrolysis of waste nitrile gloves with biomass can be used to increase the heating value and reduce viscosity of liquid fuel!

USING WASTE GLOVES AS STRENGTHENING ADDITIVES

Used nitrile gloves can be employed as a **strengthening and stabilizing additive** in expansive soil and could play an important role in displacing carbon-intensive cement!

However, more research is needed to consider:

&

CLIMATE IMPACT OF DISINFECTION PROCESSES BIO-DEGRADABLE DISPOSABLE GLOVE ALTERNATIVES

REFERENCES

Bosco, F., & Mollea, C. (2021). Biodegradation of Natural Rubber: Microcosm Study. *Water, Air, & Soil Pollution, 232,* 227. <u>https://doi.org/10.1007/s11270-021-05171-7</u>

Garçon, M., Sauzéat, L., Carlson, R., Shirey, S., Simon, M., Balter, V., & Boyet, M. (2016). Nitrile, latex, neoprene, and vinyl gloves: A primary source of contamination for trace element and Zn isotopic analyses in geological and biological samples. *Geostandards and Geoanalytical Research, 41*(3), 367–380. <u>https://doi.org/10.1111/ggr.12161</u>

Hayeemasae, N., Salleh, S.Z. & Ismail, H. (2019). Utilization of chloroprene rubber waste as blending component with natural rubber: aspect on metal oxide contents. *Journal of Material Cycles and Waste Management 21,* 1095–1105. <u>https://doi.org/10.1007/s10163-019-00862-0</u>

Kilmartin-Lynch, S., Roychand, R., Saberian, M., Li, J., & Zhang, G. (2022). Application of COVID-19 single-use shredded nitrile gloves in structural concrete: Case study from Australia. *Science of the Total Environment, 812,* 151423. <u>https://doi.org/10.1016/j.scitotenv.2021.151423</u>

Mishra, R., Iyer, J., & Mohanty, K. (2019). Conversion of waste biomass and waste nitrile gloves into renewable fuel. *Waste Management, 81*, 397-407.

https://doi.org/10.1016/j.wasman.2019.04.032

Mishra, R. & Mohanty, K. (2020). Co-pyrolysis of waste biomass and waste plastics (polystyrene and waste nitrile gloves) into renewable fuel and value-added chemicals. *Carbon Resources Conversion, 3*, 145-155. <u>https://doi.org/10.1016/j.crcon.2020.11.001</u>

Rahman, M., Rusli, A., Misman, M., & Rashid, A. (2020). Biodegradable gloves for waste management post-COVID-19 outbreak: A shelf-life prediction. *ACS Omega, 5*(46), 30329–30335. <u>https://doi.org/10.1021/acsomega.0c04964</u>

Rizan, C., Reed, M., & Bhutta, M. F. (2021). Environmental impact of personal protective equipment distributed for use by health and social care services in England in the first six months of the COVID-19 pandemic. *Journal of the Royal Society of Medicine, 114*(5), 250–263. <u>https://doi.org/10.1177/01410768211001583</u>

Wang, Z., An, C., Lee, K., Chen, X., Zhang, B., Yin, J., & Feng, Q. (2022). Physicochemical change and microparticle release from disposable gloves in the aqueous environment impacted by accelerated weathering. *Science of the Total Environment, 832.* <u>https://doi.org/10.1016/j.scitotenv.2022.154986</u>

Zhu, J., Saberian, M., Perera, S., Roychand, R., Li, J., & Wang, G. (2022). Reusing COVID-19 disposable nitrile gloves to improve the mechanical properties of expansive clay subgrade: An innovative medical waste solution. Journal of *Cleaner Production, 375* <u>https://doi.org/10.1016/j.jclepro.2022.134086</u>