MATH 312: ASSIGNMENT 6 DUE DATE: OCTOBER 26, 2012

1) Find a reduced residue system modulo 10 and 17 .
2) Use Euler's theorem to show to find the last digit of the decimal expansion of $7^{999,999}$.
3) Solve $3 x \equiv 5 \bmod 16$ using Euler's theorem.
4) Find all positive integers n such that $\phi(n)=6$. Prove that your list of solutions is complete.
5) Find the least positive integer n such that $\phi(n) \geq 100$.
6) A multiplicative function f is called strongly multiplicative if and only if $f\left(p^{k}\right)=f(p)$ for every prime p and every positive integer k. Show that $f(n)=\phi(n) / n$ is a strongly multiplicative function.
7) show that the equation $\sigma(n)=k$ has at most a finite number of solutions when k is a positive integer.
8) Find a factor of $2^{46,189}-1$.
9) Find a complete set of incongruent primitive roots of 19 .
10) Find the number of incongruent roots modulo 11 of $x^{4}+x^{2}+1$.
[^0]
[^0]: Date: Nov 28, 2012.

