BEST 402 Industrial Ecology Guest Lecture: BIM-LCA

Haibo Feng, PhD, PMP, LEED AP Sustainable Timber Built Environment Department of Wood Science Office: FSC4027 (Email: Haibo.feng@ubc.ca)

Contents

- 1. Building Information Modelling (BIM) Introduction
- 2. Whole building LCA with BIM
- 3. BIM-LCA Challenges

Know each other:

Myself: Civil Engineering,, BIM, LCA, Building Performance, Energy modeling

The Class:

- 1. Did you have internship/work experience?
- 2. What do you want to do after school?
- 3. Who are your employers?
- 4. What is your selling point? (software, certificates, training, projects)

1. Building Information Modeling (BIM)

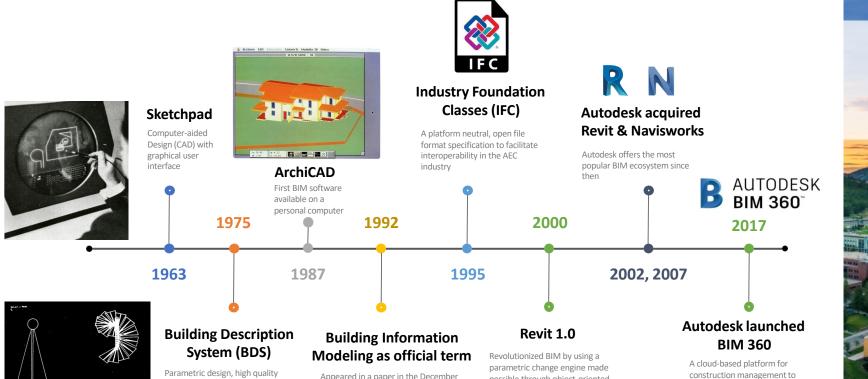
How does the industry make these wood products? What happen if the architect changed the design in the last minute?

What is **BIM**?

BIM Acronym

- Building Information Modelling (Model/Management)
- Technology? software? process? protocol?

BIM Definitions


"...a modeling technology and associated set of processes to produce, communicate, and analyze building models." – *BIM Handbook*

"...is a digital representation of physical and functional characteristics of a facility...serves as a shared knowledge resource for information about a facility, forming a reliable basis for decisions during its life cycle from inception onward." – *National BIM Standard USA*

Watch Video: **What is BIM?** https://www.youtube.com/watch?v=suNadRnHy-U

History of BIM

computable 3D representations, with a "single integrated database for visual and quantitative analyses"

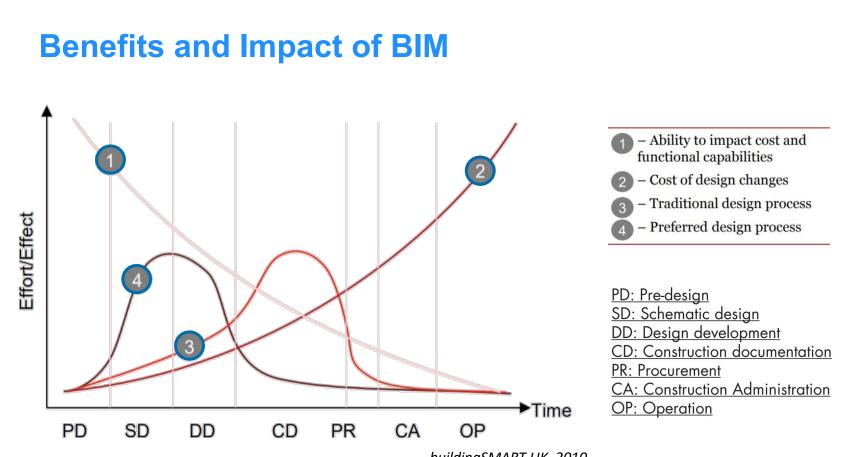
Appeared in a paper in the December 1992 Automation in Construction

possible through object-oriented programming and a platform allowing time attribute to be added.

improve decision-making

Benefits and Impact of BIM

BIM Benefits


- Improves design and analysis
- Increases output quality
- Facilitates information sharing and management

Impact on Project Performance

- 20% reduction in build costs
- 33% reduction in costs over the lifetime of the asset
- 47% to 65% reduction in conflicts and re-work during construction
- 44% to 59% increase in overall project quality
- 35% to 43% reduction in risk, improved predictability
- 34% to 40% better performing completed infrastructure
- 32% to 38% improvement in review and approval cycles

- buildingSMART UK, 2010

BIM Adoption Worldwide

United Kingdom

- Mandatory to use BIM in all government projects
- BIM adoption rose from 10% in 2011 to 74% in 2018

United States

- Early pioneer but slow adopter
- Some states and government department mandate BIM
- 72% construction firms in the US are believed to be using BIM

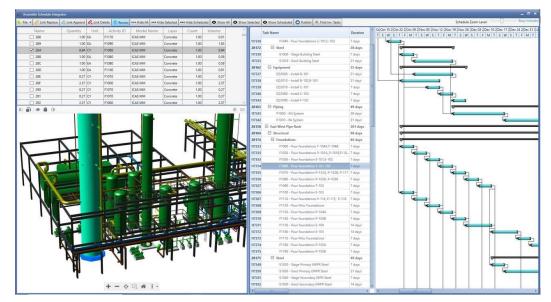
Singapore – mandatory for projects over 5,000 sqm from 2015

Russia – obligatory for all federal orders from 2017

Brazil - mandatory in 2021

- Chile obligatory for gov. projects in 2020
- Italy mandatory for projects over 100 million in 2019

Australia – wide-ranging but fragmented



BIM Models

A BIM model is the digital description of every aspect of the built facility. It draws on information assembled collaboratively and updated at key stages of a project.

How is a BIM model different from a 3D model?

- Geometry and attributes
- Materials, cost, vendor, schedule, etc.
- Describe behaviours and relationship
- Parametric design

BIM – Levels of Developments (LOD)

- Defines the extent to which model elements are developed
- Provides clarity & certainty about that is expected from everyone involved in modelling

LOD 100 Conceptual	LOD 200 Approximate geometry	LOD 300 Precise geometry	LOD 400 Fabrication	LOD 500 As-built
	e de			
The Model Element may be graphically represented in the Model with a symbol or other generic representation, but does not satisfy the requirements for LOD 200. Information related to the Model Element (i.e. cost per square metre, etc.) can be derived from other Model Elements.	The Model Element is graphically represented in the Model as a generic system, object, or assembly with approximate quantities, size, shape, location, and orientation.	The Model Element is graphically represented in the Model as a specific system, object, or assembly accurate in terms of quantity, size, shape, location, and orientation.	The Model Element is graphically represented in the Model as a specific system, object, or assembly that is accurate in terms of quantity, size, shape, location, and orientation with detailing, fabrication, assembly, and installation information .	The Model Element is a field verified representation accurate in terms of size, shape, location, quantity, and orientation.

BIM – Dimensions

-	
5	

- Existing Conditions Model -Scanning -Ground Penetration
- Safety & Logistics Models
- Animation. renderings, walkthroughs
- BIM driven prefabrication
- Laser accurate BIM driven field layout

4D

- SCHEDULING Project Phasing Simulations
- Lean Scheduling -Last Planner -Just In Time (IIT)

Installation

- -Detailed Simulation
- Visual Validation for Payment Approval

-Quantity Extractions Prefabrication Solutions

5D ESTIMATING

- Real time conceptual modeling and cost planning
- Quantity extraction support detailed cost estimates

Trade Verifications -Structural Steel

- -Mechanical Plumbing -Electrical Value Engineering
- -Visualisations
- -Equpment Rooms

-MEP Systems -Unique architectural

and structural elements

FACILITY

6D

SUSTANABILITY

Detail energy

LEED Tracking

tracking

Conceptual energy

analysis via Eco Tech

Sustainable element

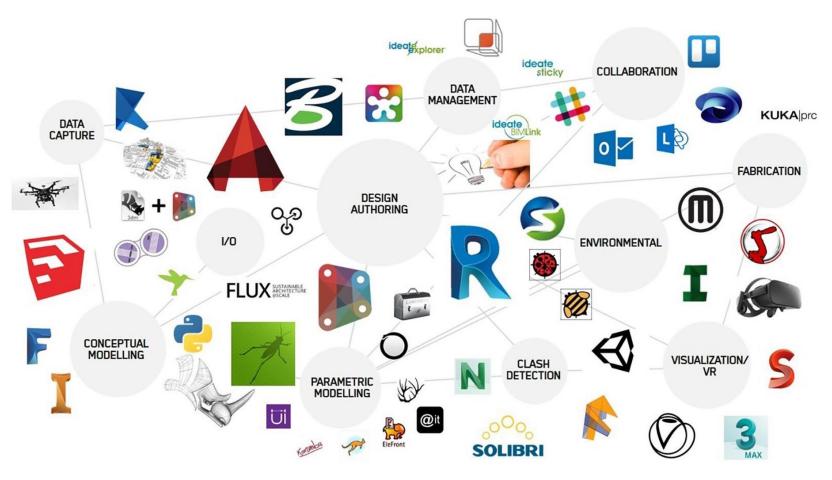
MANAGEMENT APPLICATION Life Cycle BIM Strategies BIM As-Builts BIM embedded O&M Manuals analysis via D Profiler COBie data population and extraction BIM Maintenance **Plans and Technical** Support BIM file hosting on lend lease's Digital

7D

BIM-LCA DUNLEOU

UBC
NYV7

12



100

BIM DIMENSION

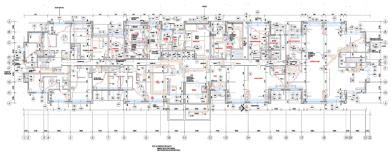
Source: https://www.firstinarchitecture.co.uk/the-advantages-of-bim-and-its-future/

BIM – Software

UBC

13

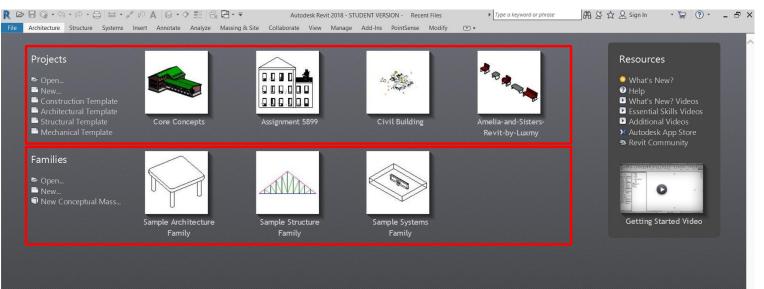
What is Autodesk Revit?


• BIM platform software (design authoring, model analysis & simulation)

Revit is NOT BIM

• BIM is a methodology; Revit is a platform for BIM tasks & collaboration

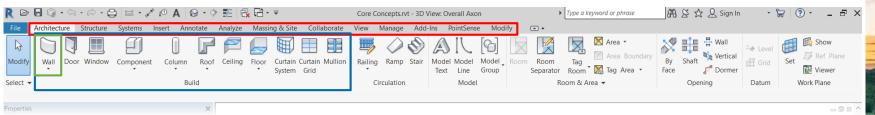
Difference between AutoCAD and Revit


• Digital drawing vs. intelligent modelling

Basic UI windows and functions

Lunch Screen

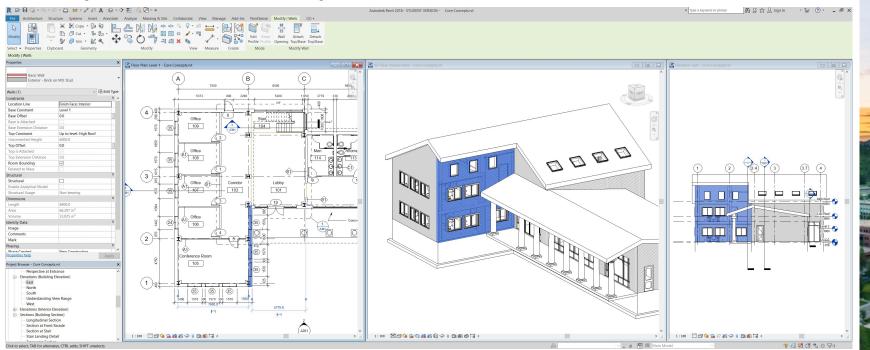
Basic UI windows and functions

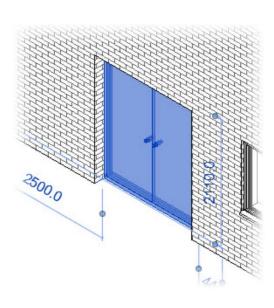

- Lunch Screen
- Application Menu

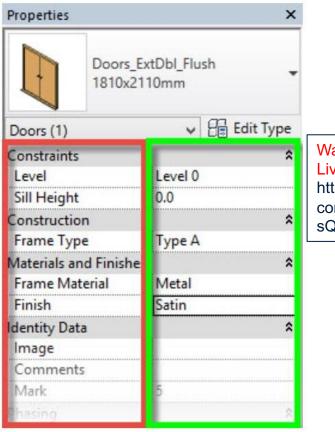
File	Architecture	Structure	Systems	Insert	Annotate	Analyze	Massi	ng & Site	Colla
	6) E	Rece	nt Document	s		1			
		By Orde	ered List 💌			3	Floor	Curtain Cur	tain
	New 🕨					ſ	•	System G	rid
		Cor	e Concepts.rv	rt		-(m)			
	0	Ass	ignment 5899	ə.rvt		-			
	Open 🕨	Tech	nnical_school-	current_m	_linked.rvt	-[=1			
_		GG	ZS-01-A-R04	-2017090	8.rvt	[==]			
	Save	EH	Revit Model.n	vt					
		Tech	nnical_school-	current_m	_linked.rvt	-(=1			
	Save As	Tech	nnical_school-	current_m	n.rvt				
		rst_	advanced_sar	nple_proje	ect.rvt				
	_	rme	_basic_sample	e_project.r	vt				
	Export •	rac_	_advanced_sar	mple_proje	ect.rvt				
		Civi	l Building.rvt			-(=1			
	Suite	Am	elia-and-Siste	rs-Revit-b	y-Luxmy.rvt			_	/
	Workflows	Cor	ndo.rvt			-(=1		/	
		Grid	ds.rvt			-(=1			
Ċ.	Publish 🕨	Lev	els.rvt			-(=1			D
								L.	
6	Print 🕨								
-	, , ,							Ĩ	D
								6	
	Close								
				Opti	ons	Revit			
	3D Stair				_	1			
	- 3D Stair Cut	away							
	Aerial View								
	Camera at S		r Balcony						
	Overall Axc					1:100	153 4	I 🔅 💃 🕼	. 👼 .
Clickto	Perspective elect, TAB for al			TT .un a al -	-1-	1 1.100			ŝ

Basic UI windows and functions

- Lunch Screen
- Application Menu
- Ribbon Menu (tabs, panels, tools > tooltips)

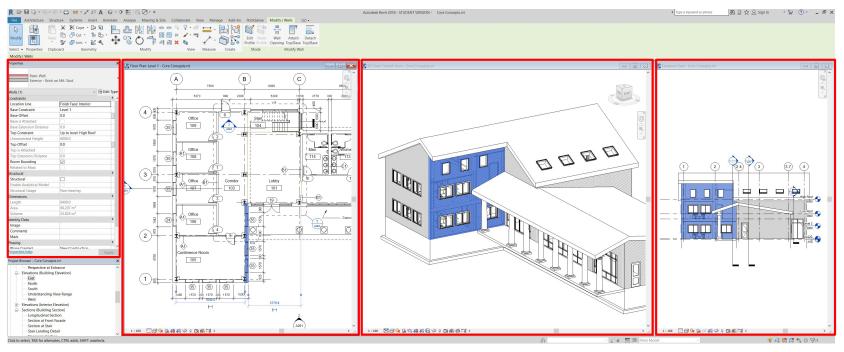



Easy-to-use interface


• Drag-over hints, smart cursor, well-organised menu

Parametric Modelling

• Everything is driven by parameters


Watch Video: Revit Live Demo: https://www.youtube. com/watch?v=_IXmH sQbakM

Parametric Modelling

- Everything is driven by parameters
- One model, one database; Change it once and it changes everywhere!

20

2. Whole Building LCA with BIM

Whole Building LCA

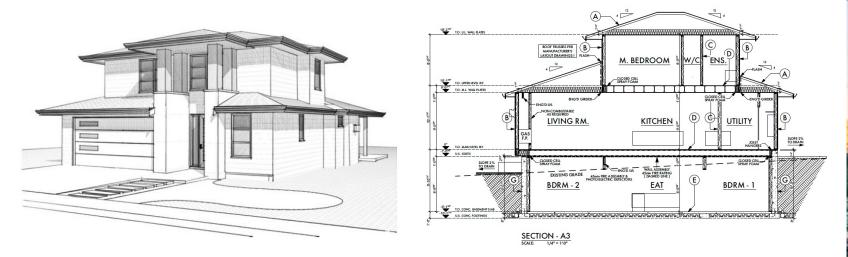
Building Assessment Information												Supplementary Information				
A1-A3	A1-A3 A4-A5 B1-B7 C1-C4										D					
Product St	tage		Construction Process Use Stage					ge			End of Life					Benefits and Loads beyond the System
A1 A2	A3	A4	A5		B1	B2	В3	В4	B5		C1	C2	C3	C4		Boundary
Raw material supply and pro- duction of building products Transport	Manufacturing	Transport	Construction-Process		s B6 B7		rational		=		Deconstruction/Demolition	Transport	Waste Processing	Disposal		Reuse- Recovery- Recycling- Potential

UBC

Source: EN15978

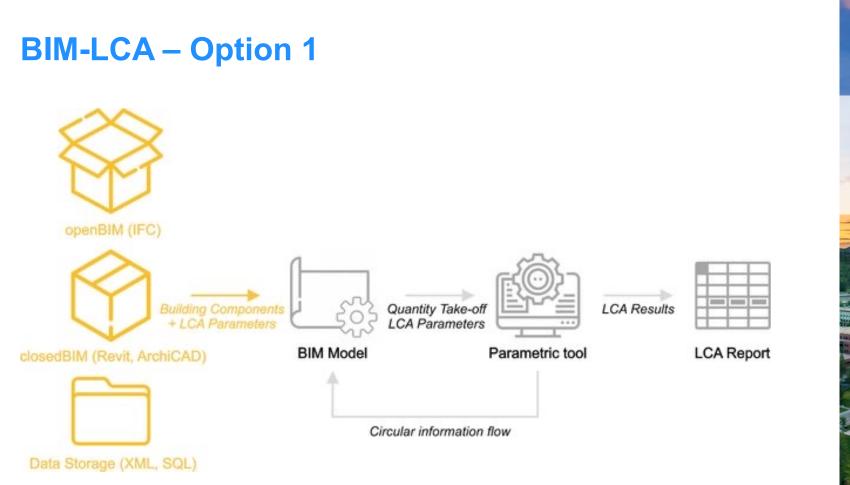
Whole Building LCA

- Code-compliance
- Think about the impact of a building in a 60-year lifetime
- Whole-building life cycle assessment professional (BCIT) Micro certificate

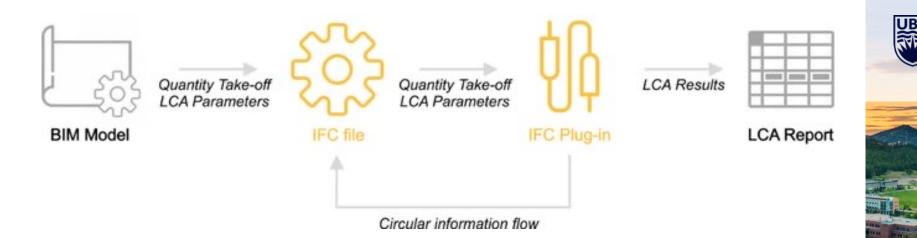


BIM-LCA

- Support architects on early design
- Material/design option selections
- Overall building environmental impacts
- BIM model is the key for LCA accuracy



BIM-LCA – Model development


25

- 1. Existing BIM model from architect
- 2. Simplified BIM model
- 3. 2D Cad drawing
- 4. As-built pdf
- 5. Blueprint

Source: Neneva et al. 2020. (DOI: 10.3390/su12093748)

BIM-LCA – Option 2

27

BIM-LCA Tools

- Athena Impact Estimator (Link: https://calculatelca.com/)
- BIM Tally (Link: https://choosetally.com/download/)
- One Click LCA (Link: https://www.oneclicklca.com/)

28

Foundation: Be familiar with building drawings

Foundation. De laminar with pulluing urawings

One Click LCA Demo

https://www.oneclicklca.com/

BIM-LCA Challenges

- 1. Software database limitation for design option
- 2. Information missing from BIM model transfer (ifc, gbxml, rvt)
- 3. Material impact data source (EPD)

Haibo Feng, PhD, PMP, LEED AP Sustainable Timber Built Environment Department of Wood Science Office: FSC4027 (Email: Haibo.feng@ubc.ca)

