A Laser Diode Illumination Source Suitable for Interferometry

Student: Kyanoosh Rouhi

Project Sponsor: Dr. G. Schajer

Project Period: September 2015 - December 2015

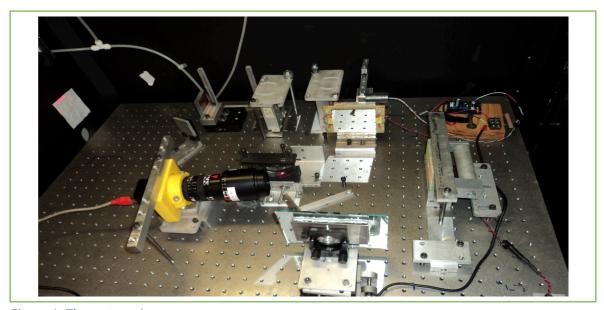


Figure 1: The test equipment

Electronic Speckle Pattern Interferometry (ESPI) is an optical method that uses a laser beam to measure very small surface deformations. In this method the difference between the distances traveled by two waves is measured through interference.

The use of a blazed reflective diffraction grating is explored as a means to compensate for the difference in the optical path lengths between two split beams in an achromatic interferometer used for in-plane ESPI measurements. A diffraction grating placed in front of the beam splitter has two desirable features:

it allows the use of a laser diode with low coherence as the light source, and it produces a geometry in which all light rays traveling inside the interferometer have the same optical path lengths. This makes the interferometer suitable for interferometry over extended surface area. A method to find the coherence interval of the laser diode is also described so as to achieve the fringe patterns with the highest visibility throughout the measured images.

Copyright held by UBC. UBC Authors are:
OR
The copyright holders of this file grants permission for its use through a Creative Commons license, and the uploading and use of this file to the UBC Wiki is compliant with the license terms (select specific license):
Creative Commons Attribution 2.5 Canada (<u>legal code</u>)
Creative Commons Attribution ShareAlike 3.0 (<u>legal code</u>)
Creative Commons Attribution ShareAlike 2.5 (<u>legal code</u>)
Creative Commons Attribution 3.0 (<u>legal code</u>)
Creative Commons Attribution 2.5 (<u>legal code</u>)
Creative Commons CC0 Waiver (release all rights, like public domain: <u>legal code</u>