Treadmarks: Distributed Shared Memory on Standard Workstations and Operating Systems

P. Keleher, A. Cox, S. Dwarkadas, and W. Zwaenepoel The Winter Usenix Conference 1994

DSM (distributed shared memory)

- A software system for parallel computation
 - Shares distributed memories
 - Easier programming
 - -Provide a single global address space

DSM (distributed shared memory)

- No widely available DSM implementations
 - In-house research platforms
 - Kernel modifications
 - Poor performance
 - -Imitating consistency protocols of hardware
 - -False sharing

Treadmarks

Objectives

- Commercially available workstations and OS –Standard Unix system on DECstation
- Efficient user-level DSM implementation

 Reduce communication overhead

Design

- LRC (lazy release consistency)
- Multiple writer protocol
- Lazy diff creation

- Sequential Consistency
 - Every write visible "immediately"
 - Single writer

- Sequential Consistency
 - Every write visible "immediately"
 - Single writer

- Sequential Consistency
 - Every write visible "immediately"
 - Single writer

- Release Consistency
 - Relaxed memory consistency model
 - delay making its changes visible to other processor s until certain synchronization accesses occurs
 - Synchronization points

-Acquire(), Release() (similar to locks, barriers)

• Two types

-ERC (eager), LRC (lazy)

- Release Consistency
 - Acquire() and release() are sequentially consistent
 - Release() is performed after all previous operations have completed
 - Operations are performed after previous acquire() have been performed
 - Acquire() and release() pair between conflictin g accesses
 - -SC and RC produce the same results.

ERC

 Write information is delivered at the release p oint

ERC

 Write information is delivered at the release p oint

LRC

- The delivery is postponed until the acquire
- Fewer messages than ERC

Multiple writer protocol

Multiple writer protocol

Twin and Diff

Twin and Diff

Etc.

- Lock & barrier
 - Statically assigned manager

- Garbage collection
 - reclaim the space used by write notice record s, interval records, and diffs
 - Triggered when the free space drops below a threshold

Experimental Environment

- 8 DECstation-5000/240
- connected to a 100-Mbps ATM LAN and a 10-Mbps Et hernet
- Applications
 - Water molecular dynamics simulation
 - Jacobi Successive Over-Relaxation
 - TSP branch & bound algorithm to solve the traveling salesman problem
 - Quicksort using bubblesort to sort subarray of less t han 1K element
 - ILINK genetic linkage analysis

Execution statistics

	Water	Jacobi	TSP	Quicksort	ILINK
Input	343 mols	2000x1000	19-city tour	256000	CLP
	$5 { m steps}$	floats		integers	
Time (secs) \Box	15.0	32.0	43.8	13.1	1113
Barriers/sec	2.5	6.3	0	0.4	0.4
Locks/sec	582.4	0	16.1	53.9	0
Msgs/sec	2238	334	404	703	456
Kbytes/sec	798	415	121	788	164

Execution time breakdown

Unix overhead breakdown

TreadMarks overhead breakdown

Execution time breakdown for Water

ERC vs. LRC

Speedup

Message rate

ERC vs. LRC

Data rate

Diff creation rate

pages

....
P
....

time stamp

0 0 0

P1 side

P0 side

Acq(L)

Proc Array

.

0

1

