

1. Symmetry, Group Theory, and Electronic Structure

- 1.1 Fundamentals
- **1.2 Symmetry and Group Theory**
- 1.3 Vibrational Spectroscopy

2. Ground State Spectroscopic Methods

- 3. Excited State Spectroscopic Methods
- 4. Other Physical Methods

Some Important Definitions

- symmetry operation: movement of an object such that every point of the object is coincident with an equivalent point
- symmetry element: geometrical entity with respect to which a symmetry operation is performed

$\frac{1}{2}$	H H
$\bigcirc \bigcirc$	Ή [▼] H

Element	Symmetry Operation	Symbol
Plane of symmetry	Reflection of all points through the plane	$\sigma_v, \sigma_h, \sigma_d$
Inversion center	Inversion of all points through the inversion center	i
Proper axis of rotation	Rotation of all points about the axis by an amount $m \ge (2\pi/n)$ [for C_n^m]	C ₂ , C ₃ , C ₃ ² , C ₄ ,
Improper axis of rotation	Coupled rotation about an axis/reflection perpendicular to that axis by $m \ge (2\pi/n)$	$S_2, S_3, S_3^2, S_4, \dots$
(Identity)	Do nothing	Е

Mathematical Groups

- collection of elements with mathematical four properties:
 - IDENTITY \rightarrow There is an element e of the group such that $a \bullet e = e \bullet a = a$ for any element a of the group
 - CLOSURE \rightarrow If a and b are in the group then the result of $a \bullet b$ is also a member of the group
 - For any element *a* of the group there is an a^{-1} such that • INVERSE \rightarrow $a \bullet a^{-1} = a^{-1} \bullet a = e$
 - **ASSOCIATIVITY** \rightarrow If *a*, *b* and *c* are in the group then $(a \bullet b) \bullet c = a \bullet (b \bullet c)$
 - general definitions for any group of mathematical elements (a, b, c, etc.) under a particular operator (• above)
 - commutativity is not necessary (special groups \rightarrow **Abelian**)
- Symmetry Point Groups are mathematical groups where:
 - the elements are symmetry operations
 - $C_2 \times C_2 \times \sigma_v = C_2 C_2 \sigma_v \rightarrow \begin{array}{c} \text{do } \sigma_v \text{ and then} \\ \text{2 } C_2 \text{ rotations} \end{array}$ the operator simply states that operations should be performed sequentially from right to left... (product of operations)

Do the symmetry operations for NH₃ form a point group?

• what are the symmetry operations?

Construct multiplication table

 $\alpha \times \beta$

$$\beta \underbrace{\Downarrow}_{k} \stackrel{\alpha \Rightarrow}{\longrightarrow} \underbrace{E \quad C_{3} \quad C_{3}^{2} \quad \sigma_{v} \quad \sigma_{v}^{\prime} \quad \sigma_{v}^{\prime}}_{E \quad E \quad C_{3} \quad C_{3}^{2} \quad \sigma_{v} \quad \sigma_{v}^{\prime} \quad \sigma_{v}^{\prime}}_{E \quad C_{3} \quad C_{3}^{2} \quad E \quad \sigma_{v}^{\prime} \quad \sigma_{v}^{\prime} \quad \sigma_{v}^{\prime}}_{V} \quad \sigma_{v}^{\prime} \quad \sigma_{v}^{\prime}}_{C_{3}^{2}} \quad E \quad C_{3} \quad \sigma_{v}^{\prime\prime} \quad \sigma_{v}^{\prime} \quad \sigma_{v}^{\prime}}_{C_{3}^{2}} \quad E \quad C_{3}^{2} \quad C_{3}^{2} \quad C_{3}^{\prime}}_{\sigma_{v}^{\prime}} \quad \sigma_{v}^{\prime} \quad \sigma_{v}^{\prime} \quad \sigma_{v}^{\prime} \quad \sigma_{v}^{\prime}}_{V} \quad \sigma_{v}^{\prime} \quad \sigma_{v}^{\prime} \quad \sigma_{v}^{\prime}}_{V} \quad \sigma_{v}^{\prime} \quad \sigma_{v}^{\prime} \quad \sigma_{v}^{\prime}}_{V} \quad \sigma_{v}^{\prime} \quad \sigma_{v}^{\prime}}_{V} \quad \sigma_{v}^{\prime} \quad \sigma_{v}^{\prime} \quad \sigma_{v}^{\prime}}_{V} \quad \sigma_{v}^{\prime} \quad \sigma_{v}^{\prime} \quad \sigma_{v}^{\prime} \quad \sigma_{v}^{\prime} \quad \sigma_{v}^{\prime} \quad \sigma_{v}^{\prime} \quad \sigma_{v}^{\prime}}_{V} \quad \sigma_{v}^{\prime} \quad \sigma_{v$$

Symmetry Point Groups

- Localized symmetry representations of geometric objects
 - All molecules belong to a "point" group
 - the "point" \rightarrow invariant point where all symmetry elements converge
- Extended structures (crystals) described by Space Groups
 - Space groups = point groups + translational symmetry (crystallography)
- Nomenclature \rightarrow two systems in general use

Operation:	Schönflies Notation	International Notation		
Identity:	E	1		
Proper Rotation:	C_n	n		
Mirror Plane ⊥ Principal	σ_{k}	/m		
Axis:	-			
Mirror Plane Principal Axis:	$\sigma_{_{v}}, \sigma_{_{d}}$	m		
Improper Rotation:	Sn	\overline{n}		
Inversion:	i	ī		

- Low Symmetry Point Groups
 - contain no rotational symmetry elements
 - symmetry defined for a specific geometry (frozen coordinates)

- Rotational Point Groups
 - contains only one rotational axis
 - other elements possible...

• Rotational Point Groups (continued)

- S_n exists uniquely for even $n \ge 4$, since
 - $S_1 \equiv C_s$
 - $S_2 \equiv C_i$
 - $S_n \equiv C_{nh}$ for all odd $n \ge 3$

• Dihedral Point Groups \rightarrow more than one axis of rotation

Chem 529 (2009-W2)

- High Symmetry Point Groups
 - multiple primary axes of rotation

Classification of Molecules into Point Groups

- 1. Match symmetry elements of molecule with those of the character tables of a point group (more on this later).
- 2. Use a flow chart:

Representations of Groups \rightarrow Character Tables

- Illustrations can describe effects of symmetry operations , but more convenient to use a representational shorthand notation
 - Representations → symbols that contain information associated with the entire set of symmetry operations of a point group
 - Character Tables → summary of relationships (characters) btw reps & individual symmetry operations

Mulliken Symbols used to indicate $\Gamma_{
m IR}$

 $\begin{array}{ccc} & = 1 & & \mbox{then A or B} \\ \chi(\hat{E}) & = 2 & & \mbox{then E} \\ & = 3 & & \mbox{then T} \end{array}$

For 1 dimensional irreps:

$(\hat{O}^{1}) = +1$	then A (<i>i.e.</i> symmetric)
$\chi(\hat{C}_n^1) \stackrel{\texttt{=+1}}{\texttt{=-1}}$	then B (<i>i.e.</i> antisymmetric)

$$\begin{split} \chi(\perp \hat{C}_n^1) \ or \ \chi(\hat{\sigma}_v) &= +1 \\ = -1 \end{split} \begin{array}{c} \text{then Sub1} (e.g. \ A_1) \\ \text{then Sub2} \end{aligned} \begin{array}{c} \text{Symmetry elements are usually,} \\ but not always, organized by the following priority: \\ E > C_n > C_n' > i > S > \sigma_h > \sigma_v > \sigma_d \end{array} \\ \chi(\hat{i}) &= +1 \\ = -1 \end{aligned} \begin{array}{c} \text{then Subg} (i.e. \ \text{gerade}) \\ \text{then Subu} (i.e. \ \text{ungerade}) \end{aligned}$$

 $\begin{array}{ll} \text{if no } \hat{\textit{i}:} & \chi(\hat{\sigma}_h) \stackrel{\texttt{=+1}}{=-1} & \text{then Super'} (\textit{e.g. } \textit{A}_\texttt{2}') \\ \text{then Super''} \end{array}$

<i>C</i> _{3v}	E	$2C_{3}$	$3\sigma_v$
A_1	1	1	1
A_2	1	1	-1
E	2	-1	0

- Building a Simple Character Table
 - Determine the effect of all symmetry operations on a series of geometrical basis vectors and tensors $x, y, z, R_x, R_y, R_z, xy, xz, yz, x^2 y^2, z^2, etc.$

double-check accuracy of character table by ensuring that products of two operations still work...

• label irreps using rules defined previously...

- totally symmetric representation is very special...
 - always exists defines the actual symmetry of the point group
 - mathematically, only functions that are totally symmetric will have non-zero integrals when integrated over all space:

$$\int_{-\infty}^{\infty} f(\tau) d\tau \neq 0 \quad \to \text{ if } f(\tau) \mapsto A_{1} \quad \text{in } \mathcal{C}_{2\nu} \text{ symmetry}$$

$$\int_{-\infty}^{\infty} f(\tau) d\tau = 0 \quad \to \text{ if } f(\tau) \mapsto \text{ any other } \Gamma_{i}$$

Five Theorems for Complete Set of Irreps in a Point Group

- Sum of squares of the dimensions of Γ_i of a group = the order of the group (h)
- Sum of squares of the characters in Γ_i = the order of the group
- Γ_i are mutually orthogonal (i.e. they define a minimal basis set)

$$\sum_{i} \Bigl[\chi_i(\hat{E}) \Bigr]^2 = h$$

$$\sum_{\hat{\boldsymbol{R}}} \Bigl[\boldsymbol{\chi}_{\boldsymbol{i}}(\hat{\boldsymbol{R}}) \Bigr]^2 = h$$

$$\sum_{\hat{R}} \chi_i(\hat{R}) \chi_j(\hat{R}) = 0 \text{ for } i \neq j$$

- For a given Γ_i , the characters of all operations belonging to the same class are identical
 - ops can be turned into one another by changing reference frame
- Number of Γ_i equals the number of classes

<i>C</i> _{3v}	E	$2C_{3}$	$3\sigma_v$
A_1	1	1	1
A_2	1	1	-1
E	2	-1	0

- not all point groups can constructed in this way
 - can be completed by using theorems + other mathematical approaches
 - luckily, you generally don't have to build character tables from scratch
 - what about representations that don't give +1 and/or -1 as characters?

D _{4h}	E	$2C_4(z)$	<i>C</i> ₂	2 <i>C</i> ' ₂	2 <i>C</i> " ₂	i	2 <i>S</i> ₄	σ_h	2σ _v	$2\sigma_d$	linear, rotations	quadratic functions	cubic functions
A_{1g}	+1	+1	+1	+1	+1	+1	+1	+1	+1	+1	-	x^2+y^2, z^2	-
A_{2g}	+1	+1	+1	-1	-1	+1	+1	+1	-1	-1	R _z	-	-
B_{1g}	+1	-1	+1	+1	-1	+1	-1	+1	+1	-1	-	x ² -y ²	-
B_{2g}	+1	-1	+1	-1	+1	+1	-1	+1	-1	+1	-	ху	-
Eg	+2	0	-2	0	0	+2	0	-2	0	0	$(\mathbf{R}_{\mathbf{x}}, \mathbf{R}_{\mathbf{y}})$	(xz, yz)	-
A_{1u}	+1	+1	+1	+1	+1	-1	-1	-1	-1	-1	-	-	-
A_{2u}	+1	+1	+1	-1	-1	-1	-1	-1	+1	+1	Z	-	z^3 , $z(x^2+y^2)$
B_{1u}	+1	-1	+1	+1	-1	-1	+1	-1	-1	+1	-	-	xyz
B _{2u}	+1	-1	+1	-1	+1	-1	+1	-1	+1	-1	-	-	z(x ² -y ²)
E_u	+2	0	-2	0	0	-2	0	+2	0	0	(x, y)	-	$(xz^2, yz^2) (xy^2, x^2y), (x^3, y^3)$

Degenerate Irreducible Representations

- So far, operations have all transformed into ± themselves
 - characters represent simple transformations (1x1 matrices)
- in some point groups \rightarrow transformation gives LC of vectors
 - results in degenerate representations...
- e.g. let's look at the effect of a C_3 rotation in NH₃ ($C_{3\nu}$) on (x,y,z)

$$x' = \cos \frac{2\pi}{3} x - \sin \frac{2\pi}{3} y = -\frac{1}{2}x - \frac{\sqrt{3}}{2}y$$
$$y' = \sin \frac{2\pi}{3} x + \cos \frac{2\pi}{3} y = +\frac{\sqrt{3}}{2}x - \frac{1}{2}y$$

or...(in matrix form)

in this case, the (x,y) pair must be considered as inseparable since they require each other to be properly defined within C_{3v} .

- how do we build the character table for $C_{3\nu}$?
 - remember (*x*,*y*) must now be considered together...
 - symmetry operations are E, $2C_3$, $3\sigma_v$

Uses of Character Tables – Direct Products

- often important to know the symmetry of a function that results from the product of two or more other functions, i.e. $f = f_1 \cdot f_2$
- symmetry of product function = direct product of components

$$\text{if } f = f_1 \cdot f_2 \ \text{, and} \ \begin{array}{c} f_1 \mapsto \Gamma_1 \\ f_2 \mapsto \Gamma_2 \end{array} \text{ then } f \mapsto \prod_{\substack{DP \\ \texttt{direct product}}} \Gamma_1 \times \Gamma_2 \end{array} \end{array}$$

- DP obtained by multiplying the characters of each component $\Gamma_{\rm i}$
 - e.g. in C_{3v} symmetry with $f_1 \mapsto A_1$ and $f_2 \mapsto A_2$

from
$$C_{3v}$$
 char table $\Rightarrow \frac{A_1 + 1 + 1 + 1}{A_2 + 1 + 1 + 1} + 1$
= 1 1 -1 = A_2

a direct product involving the totally symmetric representation simply results in getting the same function back...

$$\Gamma_{symm} \times \Gamma_i = \Gamma_i$$
$$A_1 \times \Gamma_i = \Gamma_i$$

Chem 529 (2009-W2)

• e.g. in
$$C_{3v}$$
 symmetry with $f_1 \mapsto E$ and $f_2 \mapsto E$

 $3\sigma_v$ E $2C_{3}$ dimension of $E \times E$ is 4... but the E+2-1 0 greatest dimensionality Γ_i in $C_{3\nu}$ from C_{3v} char table \Rightarrow is E (with 2) E+2-1 0 \rightarrow product is *reducible* $E \times E =$ (2)(2) (-1)(-1)(0)(0)4 1 0 = ?????

- DP may result in a complex solution:
 - product <u>must</u> be linear combination of irreps
 - any function can be broken down into a linear comb. of basis functions
 - reducible reps can therefore be reduced into its component irreps
 - can use a multiplication table to find that

$$E \times E = A_1 + A_2 + E$$

• we say that $E \times E$ contains A_1 , A_2 , and E

 $\Rightarrow \Gamma_{red} = \Gamma_1 + \Gamma_2 + \dots$

Uses of Character Tables – Reducible & Irreducible Reps

- character table contains complete set of irreps for a group
 - everything in the group can be reduced into LC of these irreps
- properties of a set of N operations represented by N \times N matrix
 - usually a reducible representation
 - always possible to rearrange them to produce LC of irreps
 - N×N matrix representing symmetry operations reduces to smaller 1×1, 2×2 , and 3×3 matrices, which are the irreps \rightarrow i.e. block diagonalization

1						
	1					
		1				
			2	2		
					2	2

- reduction formula to generate component irreps
 - All reducible reps can be reduced to a linear combination of irreps:
 - coefficients for component irreps is calculated using reduction formula:
- $\chi_{red}(\hat{R}) = \sum_{i} \mathbf{a}_{i} \chi_{i}(\hat{R})$ $\mathbf{a}_{i} = \frac{1}{h} \sum_{R} n_{R} \chi_{red}(\hat{R}) \chi_{i}(\hat{R})$
- $\chi_{red}(R)$ = character of the reducible representation, Γ_{red} , for operation R
- $\chi_i(R)$ = character of the irreducible representation, Γ_i , for operation R
- a_i = number of times a particular irrep, Γ_i , occurs in the reducible rep

• e.g. E×E in C_{3v}	C _{3v}	E	$2C_3$	$3\sigma_v$	
	A_1	1	1	1	Z
	A_2	1	1	-1	R _z
	E	2	-1	0	$(x,y), (\mathbf{R}_x,\mathbf{R}_y)$
	$E \times E$	(2)(2)	(-1)(-1)	(0)(0)	
	Γ_{DP}	4	1	0	

_	C_{3v}	E	$2C_3$	$3\sigma_v$	
	A_1	1	1	1	Z
	A_2	1	1	-1	\mathbf{R}_{z}
	E	2	-1	0	$(x,y), (\mathbf{R}_x,\mathbf{R}_y)$
_	$E \times E$	(2)(2)	(-1)(-1)	(0)(0)	
	Γ_{DP}	4	1	0	

$$\begin{aligned} \mathbf{a}_{A_{1}} &= \frac{1}{h} \sum_{R} \left[n_{R} \right] \left[\chi_{red}(\hat{R}) \right] \left[\chi_{A_{1}}(\hat{R}) \right] \\ &= \frac{1}{6} \left[\prod_{\hat{k} \in \mathcal{N}} \frac{1}{\chi_{red}(\hat{E})} \prod_{\hat{k} \in \mathcal{N}} \frac{1}{\chi_{A_{1}}(\hat{E})} + n_{\hat{C}_{3}}^{2} \prod_{red} \frac{1}{\hat{C}_{3}} \prod_{\hat{k} \in \mathcal{N}} \frac{1}{\chi_{A_{1}}(\hat{C}_{3})} + n_{\hat{\sigma}_{v}}^{3} \prod_{\hat{k} \in \mathcal{N}} \frac{1}{\chi_{red}(\hat{\sigma}_{v})} \prod_{\hat{k} \in \mathcal{N}} \frac{1}{\chi_{A_{1}}(\hat{\sigma}_{v})} \right] \\ &= \frac{1}{6} \left[1 \cdot 4 \cdot 1 + 2 \cdot 1 \cdot 1 + 3 \cdot 0 \cdot 1 \right] = 1 \end{aligned}$$

$$\begin{aligned} \mathbf{a}_{A_{2}} &= \frac{1}{6} \left[\begin{array}{c} 1 & \frac{4}{\chi_{red}(\hat{E})} \overbrace{\chi_{A_{2}}(\hat{E})}^{1} + n_{\hat{C}_{3}}^{2} \overbrace{\chi_{red}(\hat{C}_{3})}^{1} \overbrace{\chi_{A_{2}}(\hat{C}_{3})}^{1} + n_{\hat{\sigma}_{v}}^{3} \overbrace{\chi_{red}(\hat{\sigma}_{v})}^{0} \overbrace{\chi_{A_{2}}(\hat{\sigma}_{v})}^{-1} \right] \\ &= \frac{1}{6} \left[1 \cdot 4 \cdot 1 + 2 \cdot 1 \cdot 1 + 3 \cdot 0 \cdot -1 \right] = 1 \end{aligned} \\ \mathbf{a}_{E} &= \frac{1}{6} \left[\begin{array}{c} 1 & \underbrace{4 \cdot 1}_{F} + 2 \cdot 1 \cdot 1 + 3 \cdot 0 \cdot -1 \\ n_{\hat{E}} \overbrace{\chi_{red}(\hat{E})}^{2} \overbrace{\chi_{E}(\hat{E})}^{2} + n_{\hat{C}_{3}}^{2} \overbrace{\chi_{red}(\hat{C}_{3})}^{-1} \overbrace{\chi_{E}(\hat{C}_{3})}^{1} + n_{\hat{\sigma}_{v}}^{3} \overbrace{\chi_{red}(\hat{\sigma}_{v})}^{0} \overbrace{\chi_{E}(\hat{\sigma}_{v})}^{0} \right] \\ &= \frac{1}{6} \left[1 \cdot 4 \cdot 2 + 2 \cdot 1 \cdot -1 + 3 \cdot 0 \cdot 0 \right] = 1 \end{aligned} \end{aligned}$$

$$\begin{split} \Gamma_{\scriptscriptstyle E\times E} &= 1 \cdot A_{\!_1} + 1 \cdot A_{\!_2} + 1 \cdot E \\ &= \boxed{A_{\!_1} + A_{\!_2} + E} \end{split}$$

Using Reducible Representations → Molecular Vibrations

- symmetry of molecular motions determined by generating appropriate reducible representations!
 - use local cartesian coordinates for all *N* atoms in the molecule
 - these describe all 3N nuclear motions that are possible
 - break down into: translations, vibrations, and rotations
- e.g. determine symmetry of all vibrational modes for H₂O:

there are three sets of cartesian coordinates – *i.e.* 9 basis vectors

perform all operations on every basis vector: three possible outcomes:

+1 \rightarrow no change -1 \rightarrow reversed 0 \rightarrow change in position

 x_{i}

determine the symmetry of all vibrational modes for H₂O

 this 3N representation can be reduced into its component irreducible representations:

 $\Gamma_{3N}^{(C_{2v})} = \mathbf{a}_{A_1}A_1 + \mathbf{a}_{A_2}A_2 + \mathbf{a}_{B_1}B_1 + \mathbf{a}_{B_2}B_2 = 3 A_1 + 1 A_2 + 3 B_1 + 2 B_2$

- represents symmetry of all nuclear motions:
 - only want vibrational degrees of freedom
 - must remove translations & rotations
- character table gives answer
 - translations along x, y, z transform as x, y, z
 - rotations around x, y, z transform as R_x, R_y, R_z
- remove these and the remainder must be the vibrations!

$$\begin{split} \Gamma_{vib} &= \Gamma_{3N} - \Gamma_{trans} - \Gamma_{rot} \\ &= \begin{bmatrix} 3A_1 + A_2 + 3B_1 + 2B_2 \end{bmatrix} - \begin{bmatrix} A_1 + B_1 + B_2 \end{bmatrix} - \begin{bmatrix} A_2 + B_1 + B_2 \end{bmatrix} \\ &= \begin{bmatrix} 2A_1 + 1B_1 \end{bmatrix} \end{split}$$

Chem 529 (2009-WZ)

	1			I	I
C_{2v}	E	C_2	σ_{xz}	σ_{yz}	
A_1	+1	+1	+1	+1	z R_z x, R_y y, R_x
A_2	+1	+1	-1	-1	R_{z}
B_1	+1	-1	+1	-1	x, R_y
B_2	+1	-1	-1	+1	y, R_x

 $\Gamma_{3N} = \Gamma_{trans} + \Gamma_{vib} + \Gamma_{rot}$

Visualizing Molecular Vibrations: Using Internal Coordinates

- just determined that H_2O has
 - three fundamental vibrational modes (*a.k.a.* normal modes)
 - with the following symmetry: A_1 , A_1 , and B_1
- but... what do these look like?
 - this can be done by group theory...
 - much easier if we modify our basis vectors \rightarrow use internal coordinates
- int coord are chemically more relevant (correspond to largest forces)
 - distances (r) \equiv bond distances
 - angles (θ) = bond angles
 - dihedral angles $(\phi) \equiv$ bond torsion angles
 - intrinsically exclude translations & rotations

The University of British Columbia Department of Chemistry

- use OH bond distances in H_2O as a basis vectors. $\mathcal{J}_{=}$ _
 - the opposite of a stretch is a compression such that
- what happens to these two vectors when we operate on them...

$$\Gamma_{\rm OH} = A_1 + B_1$$

- reducible representation is for both OH stretches!
 - used Δr_1 and $\Delta r_2 \rightarrow A_1 \& B_1$ stretches therefore involve BOTH Δr_1 and Δr_2
 - must build SALCs of the component vectors
 - SALC = symmetry-adapted linear combination

Constructing Symmetry Adapted Linear Combinations

- transform set of localized functions that do NOT transform within a point group into an analogous set of delocalized functions that do!
 - used in many areas of chemistry \rightarrow MO theory, vibrational analysis, etc.
 - anywhere where symmetry is useful SALCs must be invoked
 - projection of localized functions onto correct symmetry irreps

 $\begin{array}{c} \text{projection} \\ \text{operator} \\ \text{for } \Gamma_i \end{array} \xrightarrow{\hat{P}^i(\phi)} = \frac{l_i}{h} \sum_{R} \chi_i(R) \hat{R}(\phi) \\ \swarrow_a \\ \end{array}$ dimension of **i**th irrep pply operation on a basis vector

- important things to remember:
 - each operation must be done independently (can't do just one per class!)
 - procedure yields unnormalized SALCs (must be normalized)

• *e.g.* H₂O (again!)

- $S_i \equiv \hat{P_i}(\Delta r_1) \propto \sum_R \chi_i(R) \hat{R}(\Delta r_1)$
- construct the functions (S_i) from the internal coordinates (Δr)
- look at Δr_1 first... and how it transforms in A_1

• this must be normalized $\rightarrow N = \frac{1}{\sqrt{\sum c_{\perp}^2}}$

$$S_{A_1} = \frac{1}{\sqrt{2}} (\Delta r_1 + \Delta r_2)$$

• for B_1 symmetry:

- The stretching vibrational modes are therefore
 - $A_1 \rightarrow$ symmetric linear combination of Δr_1 and Δr_2
 - $B_1 \rightarrow$ antisymmetric linear combination of Δr_1 and Δr_2
 - vibrational spectroscopy \rightarrow SALCs are referred to as symmetry coordinates

- we still have one vibrational mode left... (the other A_1 mode)
 - we have one internal coordinate left... the H-O-H bending mode
 - performing symmetry operations on this coordinate gives...

• 1st order approximation of the normal modes for H₂O are...

$$\begin{split} S_{A_1} &= \frac{1}{\sqrt{2}} \left(\Delta r_1 + \Delta r_2 \right) \\ S_{A_1} &= \Delta \theta \\ S_{B_1} &= \frac{1}{\sqrt{2}} \left(\Delta r_1 - \Delta r_2 \right) \end{split}$$

these two modes have the same symmetry and therefore can mix to form linear combinations...

normal coordinate analysis allows for such mixing and uses experimental data to determine extent of mixing in TRUE normal modes.

1 -1 1 1

1 1 1 -1 -1 -1

-1 0 -2 1

-1 0 2 -1 0

-1 -1 -1 1

- e.g. vibrational modes of $[NO_3]^-$
 - find the point group of the molecule \rightarrow
 - operate using Cartesian axes of each atom

-1

0

 R_{z}

(x,y)

Z.

 (R_r, R_v)

A₂'

E'

 A_1 "

 A_2 "

E''

1

2

2

1 1

reduce the representation...

$$\Gamma_{3N} = A_1' + A_2' + 3E' + 2A_2'' + E''$$

• remove translations & rotations

$$\begin{split} \Gamma_{vib} &= \Gamma_{3N} - \Gamma_{trans} - \Gamma_{rot} = \Gamma_{3N} - \Gamma_{x,y,z} - \Gamma_{R_x,R_y,R_z} \\ &= \begin{bmatrix} A_1' + A_2' + 3E' + 2A_2'' + E'' \end{bmatrix} - \begin{bmatrix} E' + A_2'' \end{bmatrix} - \begin{bmatrix} A_2' + E_2'' \end{bmatrix} \\ &= \begin{bmatrix} A_1' + 2E' + A_2'' \end{bmatrix} \end{split}$$

 z^2

 (x^2-y^2,xy)

(xz, yz)

- determine contributions from stretching vibrations
 - use bond distances are basis vectors
 - generate a reducible representation

• find the projections of the basis vector to generate appropriate SALCs

$$\begin{split} S_{A_{1}'} &\propto (1) \Big[\hat{E}(\Delta r_{1}) \Big] + (1) \Big[\hat{C}_{3}^{1}(\Delta r_{1}) + \hat{C}_{3}^{2}(\Delta r_{1}) \Big] + (1) \Big[\hat{C}_{2}(\Delta r_{1}) + \hat{C}_{2}'(\Delta r_{1}) + \hat{C}_{2}''(\Delta r_{1}) \Big] \\ &\quad + (1) \Big[\hat{\sigma}_{h}(\Delta r_{1}) \Big] + (1) \Big[\hat{S}_{3}^{1}(\Delta r_{1}) + \hat{S}_{3}^{2}(\Delta r_{1}) \Big] + (1) \Big[\hat{\sigma}_{v}(\Delta r_{1}) + \hat{\sigma}_{v}'(\Delta r_{1}) + \hat{\sigma}_{v}''(\Delta r_{1}) \Big] \\ &\propto (1) \Big[\Delta r_{1} \Big] + (1) \Big[\Delta r_{2} + \Delta r_{3} \Big] + (1) \Big[\Delta r_{1} + \Delta r_{2} + \Delta r_{3} \Big] + (1) \Big[\Delta r_{1} \Big] + (1) \Big[\Delta r_{1} + \Delta r_{2} + \Delta r_{3} \Big] \\ &\propto \Delta r_{1} + \Delta r_{2} + \Delta r_{3} \\ S_{A_{1}'} = \boxed{\frac{1}{\sqrt{3}}} \left(r_{1} + \Delta r_{2} + \Delta r_{3} \right) \end{split}$$

$$\begin{split} S_{E'} \propto (2) \ \Delta r_1 \ + (-1) \ \Delta r_2 + \Delta r_3 \ + (0) \ \Delta r_1 + \Delta r_2 + \Delta r_3 \ + (2) \ \Delta r_1 \ + (-1) \ \Delta r_2 + \Delta r_3 \ + (0) \ \Delta r_1 + \Delta r_2 + \Delta r_3 \\ \propto 2\Delta r_1 - \Delta r_2 - \Delta r_3 \\ S_{E'} = \boxed{\frac{1}{\sqrt{6}} \ 2\Delta r_1 - \Delta r_2 - \Delta r_3} \end{split}$$

Chem 529 (2009-W2)

• applying
$$S_{A^1}$$
 on $\Delta r_{2,3}$ in D_{3h}

$$\begin{split} S_{A_{1}'} &\propto (1) \Big[\hat{E}(\Delta \vec{r}_{2}) \Big] + (1) \Big[\hat{C}_{3}^{1}(\Delta \vec{r}_{2}) + \hat{C}_{3}^{2}(\Delta \vec{r}_{2}) \Big] + (1) \Big[\hat{C}_{2}(\Delta \vec{r}_{2}) + \hat{C}_{2}'(\Delta \vec{r}_{2}) + \hat{C}_{2}''(\Delta \vec{r}_{2}) \Big] \\ &\quad + (1) \ \hat{\sigma}_{h}(\Delta \vec{r}_{2}) + (1) \Big[\hat{S}_{3}^{1}(\Delta \vec{r}_{2}) + \hat{S}_{3}^{2}(\Delta \vec{r}_{2}) \Big] + (1) \Big[\hat{\sigma}_{v}(\Delta \vec{r}_{2}) + \hat{\sigma}_{v}'(\Delta \vec{r}_{2}) + \hat{\sigma}_{v}''(\Delta \vec{r}_{2}) \Big] \\ &\propto (1) \ \Delta \vec{r}_{2} + (1) \ \Delta \vec{r}_{3} + \Delta \vec{r}_{1} + (1) \ \mathbf{k} \vec{r}_{3} + \Delta \vec{r}_{1} + \Delta \vec{r}_{2} \ \mathbf{k} \vec{r}_{1} + \Delta \vec{r}_{2} \ \mathbf{k} \vec{r}_{1} + \Delta \vec{r}_{1} \ \mathbf{k} \vec{r}_{3} + \Delta \vec{r}_{1} + \Delta \vec{r}_{2} \ \mathbf{k} \vec{r}_{1} + \Delta \vec{r}_{1} \ \mathbf{k} \vec{r}_{3} + \Delta \vec{r}_{1} + \Delta \vec{r}_{2} \ \mathbf{k} \vec{r}_{1} + \Delta \vec{r}_{2} \ \mathbf{k} \vec{r}_{1} + \Delta \vec{r}_{1} \ \mathbf{k} \vec{r}_{3} + \Delta \vec{r}_{1} \ \mathbf{k} \vec{r}_{3} + \Delta \vec{r}_{1} + \Delta \vec{r}_{2} \ \mathbf{k} \vec{r}_{1} + \Delta \vec{r}_{2} \ \mathbf{k} \vec{r}_{1} \ \mathbf{k} \vec{r}_{2} + \Delta \vec{r}_{3} \ \mathbf{k} \vec{r}_{1} + \Delta \vec{r}_{2} \ \mathbf{k} \vec{r}_{2} \ \mathbf{k} \vec{r}_{1} \ \mathbf{k} \vec{r}_{2} \ \mathbf{k} \vec{r}_{2} \ \mathbf{k} \vec{r}_{1} \ \mathbf{k} \vec{r}_{2} \ \mathbf{k} \vec{r}_{2} \ \mathbf{k} \vec{r}_{1} \ \mathbf{k} \vec{r}_{2} \$$

$$\begin{split} S_{A_{1}'} &\propto (1) \Big[\hat{E}(\Delta \vec{r}_{3}) \Big] + (1) \Big[\hat{C}_{3}^{1}(\Delta \vec{r}_{3}) + \hat{C}_{3}^{2}(\Delta \vec{r}_{3}) \Big] + (1) \Big[\hat{C}_{2}(\Delta \vec{r}_{3}) + \hat{C}_{2}'(\Delta \vec{r}_{3}) + \hat{C}_{2}''(\Delta \vec{r}_{3}) \Big] \\ &\quad + (1) \ \hat{\sigma}_{h}(\Delta \vec{r}_{3}) + (1) \Big[\hat{S}_{3}^{1}(\Delta \vec{r}_{3}) + \hat{S}_{3}^{2}(\Delta \vec{r}_{3}) \Big] + (1) \Big[\hat{\sigma}_{v}(\Delta \vec{r}_{3}) + \hat{\sigma}_{v}'(\Delta \vec{r}_{3}) + \hat{\sigma}_{v}''(\Delta \vec{r}_{3}) \Big] \\ &\propto (1) \ \Delta \vec{r}_{3} + (1) \ \Delta \vec{r}_{2} + \Delta \vec{r}_{1} + (1) \ \mathbf{E} \vec{r}_{2} + \Delta \vec{r}_{3} + \Delta \vec{r}_{1} \Big] + (1) \ \mathbf{E} \vec{r}_{3} \Big] + (1) \ \mathbf{E} \vec{r}_{2} + \Delta \vec{r}_{1} \Big] + (1) \ \mathbf{E} \vec{r}_{2} + \Delta \vec{r}_{1} \Big] + (1) \ \mathbf{E} \vec{r}_{2} + \Delta \vec{r}_{1} \Big] \\ &\propto \Delta \vec{r}_{1} + \Delta \vec{r}_{2} + \Delta \vec{r}_{3} \\ S_{A_{1}'} &= \boxed{\frac{1}{\sqrt{3}}} \ \mathbf{E} \vec{r}_{1} + \Delta \vec{r}_{2} + \Delta \vec{r}_{3} \Big]$$

- for E' symmetry, there must be two vibrations that transform together
 - we have found one of them: $S_{E'}^{(1)} = \left| \frac{1}{\sqrt{6}} \ 2\Delta \vec{r_1} \Delta \vec{r_2} \Delta \vec{r_3} \right|$
 - finding the second vibrational mode use rules of mathematical groups
 - applying any operation of the group on the above function must lead to:
 - ± itself
 - ± another degenerate function (in this case, its only partner)
 - a linear combination of these degenerate functions
- apply C_3 to existing E' vibrational mode

$$f \propto \hat{C}_3(S_{E'}(1)) = -\Delta \vec{r}_1 + 2\Delta \vec{r}_2 - \Delta \vec{r}_3$$

- same thing as doing the projection of Δr_2 onto E'
- is this new function orthogonal to the first?

$$\left. \begin{array}{ccc} S^{(1)}_{E'} \propto +2\Delta \vec{r_1} - 1\Delta \vec{r_2} - 1\Delta \vec{r_3} \\ \hat{C}_3 \ S^{(1)}_{E'} \ \propto -1\Delta \vec{r_1} + 2\Delta \vec{r_2} - 1\Delta \vec{r_3} \end{array} \right\} \begin{array}{ccc} +2 & -1 & +-1 & +2 & +-1 & -1 \\ +2 & -1 & +-1 & +2 & +-1 & -1 \\ = & -2 & +-2 & ++1 & = \boxed{-3} \Leftarrow no! \end{array}$$

- *f* is not a complementary basis function but \rightarrow $f = c_1 S_{E'}^{(1)} + c_2 S_{E'}^{(2)}$
 - modify f by adding in some amount of first basis vector \rightarrow

$$f' = f + lpha S^{(1)}_{E'} = f + rac{1}{2} S^{(1)}_{E'}$$

$$\begin{aligned} f' &= f + \frac{1}{2} S_{E'}^{(1)} \\ &\propto -1\Delta \vec{r} + 2\Delta \vec{r}_2 - 1\Delta \vec{r}_3 + \frac{1}{2} + 2\Delta \vec{r}_1 - 1\Delta \vec{r}_2 - 1\Delta \vec{r}_3 \\ &\propto 0 \ \Delta \vec{r}_1 + \frac{3}{2} \Delta \vec{r}_2 - \frac{3}{2} \Delta \vec{r}_3 \\ &\propto \boxed{\Delta \vec{r}_2 - \Delta \vec{r}_3} \end{aligned}$$

- is this new function (f') orthogonal?
 - we have now generated a partner that is orthogonal to the initial basis function
- what do these look like?

$$\begin{aligned} f_{E'}^{(1)} &\propto +2\Delta \vec{r_1} - 1\Delta \vec{r_2} - 1\Delta \vec{r_3} \\ f' &\propto +0\Delta \vec{r_1} + 1\Delta \vec{r_2} - 1\Delta \vec{r_3} \\ +2 & 0 + -1 & +1 + -1 & -1 \\ &= 0 + -1 + +1 = 0 \iff yes! \end{aligned}$$

$$S_{E'}^{(2)} = \boxed{\frac{1}{\sqrt{2}} \ \Delta \vec{r_2} - \Delta \vec{r_3}}$$

- let's consider what we have just determined...
 - formed pair of vibrational modes whom together transform as E' in D_{3h}
 - but these basis functions are not unique!
 - other linear combinations of these basis functions will also meet the criteria that we have set out:
 - together they "span the space" of E'
 - they are orthogonal to each other

- $S_{E'}^{(1)} = \frac{1}{\sqrt{6}} \ 2\Delta \vec{r_1} \Delta \vec{r_2} \Delta \vec{r_3}$ $S_{E'}^{(2)} = \frac{1}{\sqrt{2}} \Delta \vec{r}_2 - \Delta \vec{r}_3$
- *e.g.* what if we do a combination of our existing functions?

$$\begin{split} S_{E'}^{(1')} &\propto S_{E'}^{(1)} + S_{E'}^{(2)} \\ &\propto 2\Delta \vec{r_1} - \Delta \vec{r_2} - \Delta \vec{r_3} + \Delta \vec{r_2} - \Delta \vec{r_3} \\ &\propto \boxed{\Delta \vec{r_1} - \Delta \vec{r_3}} \Rightarrow \Rightarrow \Rightarrow S_{E'}^{(2')} \propto \boxed{2\Delta \vec{r_2} - \Delta \vec{r_1} - \Delta \vec{r_3}} \end{split}$$

chosen description is only one of the possible representations of E'

θე

• thus far, we have evaluated only two of the components...

$$\begin{split} \Gamma_{vib} &= \underbrace{A_1' + E' + A_2''}_{\downarrow} \\ \underbrace{from \ bond \ stretches}_{from \ bond \ stretches} \qquad S_{A_1}^{\Delta r} \rightarrow \frac{1}{\sqrt{3}} \ \Delta r_1 + \Delta r_2 + \Delta r_3 \\ S_{E'}^{\Delta r} \rightarrow \frac{1}{\sqrt{6}} \ 2\Delta \vec{r_1} - \Delta \vec{r_2} - \Delta \vec{r_3} \qquad \& \quad \frac{1}{\sqrt{2}} \ \Delta \vec{r_2} - \Delta \vec{r_3} \end{split}$$

now look at bond bending (angular degrees of freedom)

- project out the A₁' solution
 - this solution doesn't make any sense throw it out

$$S_{_{A_{1}}}^{\Delta\theta} \rightarrow \frac{1}{\sqrt{3}} \Delta\theta_{1} + \Delta\theta_{2} + \Delta\theta_{3}$$

• what about the E' solution?

$$\begin{array}{ll} S^{\Delta\theta}_{_{E'}}(1) \rightarrow \frac{1}{\sqrt{6}} & 2\Delta\theta_1 - \Delta\theta_2 - \Delta\theta_3 \\ \& & S^{\Delta\theta}_{_{E'}}(1) \rightarrow \frac{1}{\sqrt{2}} & \Delta\theta_2 - \Delta\theta_3 \end{array}$$

Chem 529 (2009-W2)

 θ_3

we are now down to one vibrational mode that is unassigned (and one failure)

$$\Gamma_{vib} = \underbrace{A_1' + E'}_{\downarrow} + \underbrace{E'}_{\downarrow} + A_2''$$

$$\underbrace{from \ bond \ stretches}_{from \ bending \ modes} \rightarrow S_{E'}^{\Delta\theta} \rightarrow \frac{1}{\sqrt{6}} \ 2\Delta\vec{\theta_1} - \Delta\vec{\theta_2} - \Delta\vec{\theta_3}$$

$$S_{A_1}^{\Delta r} \rightarrow \frac{1}{\sqrt{3}} \ \Delta r_1 + \Delta r_2 + \Delta r_3 \qquad \& \quad \frac{1}{\sqrt{2}} \ \Delta \vec{r_2} - \Delta \vec{r_3}$$

$$\& \quad \frac{1}{\sqrt{2}} \ \Delta \vec{\theta_2} - \Delta \vec{\theta_3}$$

- let us consider the molecule again, however...
 - θ is defined in the plane only need two coordinates describe this plane since $\theta_1 + \theta_2 + \theta_3 = 2\pi$
 - the additional coordinate that describes the geometry of this molecule is NOT a simple bond angle... it must be related to a dihedral angle → out of plane distortion!

$$S^{\Delta\phi}_{_{\Gamma_{\Delta\phi}}}
ightarrow rac{1}{\sqrt{3}} \Delta\phi_1 + \Delta\phi_2 + \Delta\phi_3$$

- the rejected mode can exist if we allow for distortion out of the plane
- by inspection, this out-of-plane distortion has $A_2^{"}$ symmetry!

1

• the symmetry coordinates for NO₃⁻ are therefore:

The University of British Columbia Department of Chemistry

1.2 Symmetry and Group Theory

Symmetry in MO theory \rightarrow Making SALCS from AOs

- same approach used to create delocalized fragment molecular orbitals (FMOs) from localized atomic orbitals (or MOs)...
 - use symmetry to build orbitals that transform properly in the point group
- *e.g.*, the orbitals of the cyclopropenyl cation
 - point group $\rightarrow D_{3h}$ (same as NO₃⁻)
 - use the $2p_z$ orbitals and see how they transform

• reduce the representation \rightarrow

τ.

• Use the projection method to determine appropriate SALCs

 $\psi_i \equiv \hat{P}_i(p_z(1)) \propto \sum_R \chi_i(R) \hat{R}(p_z(1))$

$$\begin{split} \psi_{A_{2}''} &\propto (1) \Big[\hat{E}(p_{z}^{(1)}) \Big] + (1) \Big[\hat{C}_{3}^{1}(p_{z}^{(1)}) \Big] + (1) \Big[\hat{C}_{3}^{2}(p_{z}^{(1)}) \Big] + (-1) \Big[\hat{C}_{2}(p_{z}^{(1)}) \Big] \\ &+ (-1) \Big[\hat{C}_{2}'(p_{z}^{(1)}) \Big] + (-1) \Big[\hat{C}_{2}''(p_{z}^{(1)}) \Big] + (-1) \Big[\hat{\sigma}_{h}(p_{z}^{(1)}) \Big] + (-1) \Big[\hat{S}_{3}^{1}(p_{z}^{(1)}) \Big] \\ &+ (-1) \Big[\hat{S}_{3}^{2}(p_{z}^{(1)}) \Big] + (1) \Big[\hat{\sigma}_{v}(p_{z}^{(1)}) \Big] + (1) \Big[\hat{\sigma}_{v}'(p_{z}^{(1)}) \Big] + (1) \Big[\hat{\sigma}_{v}'(p_{z}^{(1)}) \Big] \\ &\propto p_{z}^{(1)} + p_{z}^{(2)} + p_{z}^{(3)} \implies \psi_{A_{2}''} = \frac{1}{\sqrt{3}} \Big(p_{z}^{(1)} + p_{z}^{(2)} + p_{z}^{(3)} \Big) \end{split}$$

$$\begin{split} \psi_{E''} &\propto (2) \Big[\hat{E}(p_z^{(1)}) \Big] + (-1) \Big[\hat{C}_3^1(p_z^{(1)}) \Big] + (-1) \Big[\hat{C}_3^2(p_z^{(1)}) \Big] + (0) \Big[\hat{C}_2(p_z^{(1)}) \Big] \\ &+ (0) \Big[\hat{C}_2'(p_z^{(1)}) \Big] + (0) \Big[\hat{C}_2''(p_z^{(1)}) \Big] + (-2) \Big[\hat{\sigma}_h(p_z^{(1)}) \Big] + (1) \Big[\hat{S}_3^1(p_z^{(1)}) \Big] \\ &+ (1) \Big[\hat{S}_3^2(p_z^{(1)}) \Big] + (0) \Big[\hat{\sigma}_v(p_z^{(1)}) \Big] + (0) \Big[\hat{\sigma}_v'(p_z^{(1)}) \Big] + (0) \Big[\hat{\sigma}_v''(p_z^{(1)}) \Big] \\ &\propto 2 p_z^{(1)} - p_z^{(2)} - p_z^{(3)} \implies \psi_{E''} = \frac{1}{\sqrt{6}} \Big(2 p_z^{(1)} - p_z^{(2)} - p_z^{(3)} \Big) \end{split}$$

• SALCs generated from the $2p_z$ orbitals in the cyclopropenyl radical are therefore

January 11, 2010

Determining Symmetry of Transition Integrals

- use symmetry to evaluate transition integrals for spectroscopy
 - Need to know symmetry of
 - atomic/molecular wavefunctions
 - Transition moment operator (\hat{M})

use direct products to get symmetry of integral
$$\rightarrow \Gamma_f \mapsto \Gamma_{\Psi_q} \times \Gamma_{\hat{M}} \times \Gamma_{\Psi_e}$$

• If AOs centred at point of point group \rightarrow easy to get symmetry

remember, these labels are symmetry \longrightarrow $s \mapsto$ totally symmetric *labels for spherical symmetry...*

determining symmetry is really a question of lowering the symmetry $p \mapsto \text{transforms as linear basis vectors} \ x, y, z$

 $f \propto \left\langle \Psi_{g} \left| \hat{M} \right| \Psi_{e}
ight
angle^{2}$

 $d \mapsto \text{transform as quadratic basis vectors}$ $xy, xz, yz, x^2 - y^2, 2z^2 - x^2 - y^2$

etc.

• *e.g.* in octahedral symmetry

O _h	E	8 <i>C</i> ₃	6 <i>C</i> ₂	6 <i>C</i> ₄	3 <i>C</i> ₂	i	6 <i>S</i> ₄	8 <i>S</i> ₆	$3s_h$	$6s_d$		
A_{1g}	+1	+1	+1	+1	+1	+1	+1	+1	+1	+1	$x^2 + y^2 + z^2$	$\mapsto s$
A_{2g}	+1	+1	-1	-1	+1	+1	-1	+1	+1	-1		
E_{g}	+2	-1	0	0	+2	+2	0	-1	+2	0	$(2z^2-x^2-y^2, x^2-y^2)$	$\mapsto d_{x^2-y^2,z^2}$
T_{1g}	+3	0	-1	+1	-1	+3	+1	0	-1	-1	(R_x, R_y, R_z)	
T_{2g}	+3	0	+1	-1	-1	+3	-1	0	-1	+1	(xy, xz, yz)	$\mapsto d_{\scriptscriptstyle \! xy,xz,yz}$
A_{1u}	+1	+1	+1	+1	+1	-1	-1	-1	-1	-1		
A_{2u}	+1	+1	-1	-1	+1	-1	+1	-1	-1	+1		
E_{u}	+2	-1	0	0	+2	-2	0	+1	-2	0		
T_{1u}	+3	0	-1	+1	-1	-3	-1	0	+1	+1	(x, y, z)	$\mapsto p_{x,y,z}$
T_{2u}	+3	0	+1	-1	-1	-3	+1	0	+1	-1		

the symmetry of the transition operator will also transform as cartesian functions:

$$\hat{M} = \hat{\mu}_1 + \hat{m}_1 + \hat{\mu}_2 + \hat{m}_2 + \dots$$

linear rotation quadratic

Assignment #2

Submit a manuscript related to your field of study that uses group theory to assist in solving a specific issue...

e.g. <u>explaining the electronic structure of C₆₀...</u>

1. Symmetry, Group Theory, and Electronic Structure

1.1 Fundamentals

1.2 Symmetry and Group Theory

1.3 Vibrational Spectroscopy

2. Ground State Spectroscopic Methods

3. Excited State Spectroscopic Methods

4. Other Physical Methods