1. Symmetry, Group Theory, and Electronic Structure
1.1 Fundamentals
1.2 Symmetry and Group Theory
1.3 Vibrational Spectroscopy
2. Ground State Spectroscopic Methods
3. Excited State Spectroscopic Methods
4. Other Physical Methods

Some Important Definitions

- symmetry operation: movement of an object such that every point of the object is coincident with an equivalent point
- symmetry element: geometrical entity with respect to which a symmetry operation is performed

Element	Symmetry Operation	Symbol
Plane of symmetry	Reflection of all points through the plane	$\sigma_{v}, \sigma_{h}, \sigma_{d}$
Inversion center	Inversion of all points through the inversion center	i
Proper axis of rotation	Rotation of all points about the axis by an amount $m \times(2 \pi / n)$ [for $\mathrm{C}_{n}{ }^{m}$]	$\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{3}{ }^{2}, \mathrm{C}_{4}, \ldots$
Improper axis of rotation (Identity)	Coupled rotation about an axis/reflection perpendicular to that axis by $m \mathrm{x}(2 \pi / n)$ Do nothing	$\mathrm{S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{3}{ }^{2}, \mathrm{~S}_{4}, \ldots$
	E	

1.2 Symmetry and Group Theory

Mathematical Groups

- collection of elements with mathematical four properties:
- IDENTITY $\rightarrow \quad$ There is an element e of the group such that $a \bullet e=e \bullet a=a$ for any element a of the group
- CLOSURE $\rightarrow \quad$ If a and b are in the group then the result of $a \bullet b$ is also a member of the group
- INVERSE $\rightarrow \quad$ For any element a of the group there is an a^{-1} such that $a \cdot a^{-1}=a^{-1} \cdot a=e$
- ASSOCIATIVITY \rightarrow If a, b and c are in the group then $(a \bullet b) \bullet c=a \bullet(b \cdot c)$
- general definitions for any group of mathematical elements (a, b, c, etc.) under a particular operator (• above)
- commutativity is not necessary (special groups \rightarrow Abelian)
- Symmetry Point Groups are mathematical groups where:
- the elements are symmetry operations

$$
C_{2} \times C_{2} \times \sigma_{v}=C_{2} C_{2} \sigma_{v} \rightarrow \begin{gathered}
\text { do } \sigma_{v} \text { and then } \\
2 C_{2} \text { rotations }
\end{gathered}
$$

- the operator simply states that operations should be performed sequentially from right to left... (product of operations)

Do the symmetry operations for NH_{3} form a point group?

- what are the symmetry operations?

- Construct multiplication table

$$
\alpha \times \beta
$$

$\beta \Downarrow{ }^{\alpha \Rightarrow}$	E	C_{3}	$C_{3}{ }^{2}$	σ_{v}	σ_{v}^{\prime}	$\sigma_{v}^{\prime \prime}$
E	E	C_{3}	$C_{3}{ }^{2}$	σ_{v}	σ_{v}^{\prime}	$\sigma_{v}^{\prime \prime}$
C_{3}	C_{3}	$C_{3}{ }^{2}$	E	σ_{v}^{\prime}	$\sigma_{v}^{\prime \prime}$	σ_{v}
$C_{3}{ }^{2}$	$C_{3}{ }^{2}$	E	C_{3}	$\sigma_{v}^{\prime \prime}$	σ	σ_{v}^{\prime}
σ_{v}	σ	$\sigma_{v}^{\prime \prime}$	σ_{v}^{\prime}	E	$C_{3}{ }^{2}$	C_{3}
σ_{v}^{\prime}	σ_{v}^{\prime}	σ	$\sigma_{v}^{\prime \prime}$	C_{3}	E	$C_{3}{ }^{2}$
$\sigma_{v}^{\prime \prime}$	$\sigma_{v}^{\prime \prime}$	σ_{v}^{\prime}	σ_{v}	$C_{3}{ }^{2}$	C_{3}	E

- Identity $\rightarrow \quad$ Yes!
- Closure $\rightarrow \quad$ Yes!
- Inverse $\rightarrow \quad$ Yes!
- Associativity \rightarrow Yes!

Symmetry Point Groups

- Localized symmetry representations of geometric objects
- All molecules belong to a "point" group
- the "point" \rightarrow invariant point where all symmetry elements converge
- Extended structures (crystals) described by Space Groups
- Space groups = point groups + translational symmetry (crystallography)
- Nomenclature \rightarrow two systems in general use

Operation:	Schönflies Notation	International Notation	
Identity:	E	1	
Proper Rotation:	C_{n}	n	
Mirror Plane \perp Principal Axis:	σ_{h}	$/ \mathrm{m}$	
Mirror Plane \|	Principal Axis:	σ_{v}, σ_{d}	m
Improper Rotation:	S_{n}	\bar{n}	
Inversion:	\bar{i}	$\overline{1}$	

- Low Symmetry Point Groups

- contain no rotational symmetry elements
- symmetry defined for a specific geometry (frozen coordinates)

$C_{1} 1 \rightarrow E$ only

$C_{s} m \rightarrow \sigma_{h}, E$

- Rotational Point Groups

- contains only one rotational axis
- other elements possible...

$C_{2} 2$

$C_{3 h} \overline{6}$

$C_{2 h} 2 / m$
$C_{n} \quad n \rightarrow C_{n}, \ldots, C_{n}^{n}=E$

$$
\begin{array}{r}
E, C_{3}, C_{3}^{2}, \sigma_{h}, S_{3}, S_{3}^{5} \quad E, C_{2}, \sigma_{h}, i=S_{2} \\
C_{n h}\left(\begin{array}{c}
n / m, \overline{(2 n)} \\
\operatorname{even} n \\
\text { odd } n
\end{array}\right) \rightarrow C_{n}, \ldots, C_{n}^{n}=E, \sigma_{h}
\end{array}
$$

- Rotational Point Groups (continued)

$E, C_{2}, \sigma_{v}, \sigma_{v}^{\prime}$
$C_{2 v} 2 m m$

$$
C_{n v}\binom{n m m, n m}{\text { even } n \text { odd } n} \rightarrow C_{n}, \ldots, C_{n}^{n}=E, n\left(\sigma_{v}\right)
$$

HCl
$E, C_{\infty}, \infty \sigma_{v}$
E, S_{4}
$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{4}$

$$
C_{\infty v}
$$

$S_{4} \overline{4}$

- S_{n} exists uniquely for even $n \geq 4$, since
- $\mathrm{S}_{1} \equiv \mathrm{C}_{\mathrm{s}}$
- $\mathrm{S}_{2}=\mathrm{C}_{\mathrm{i}}$
- $\mathrm{S}_{\mathrm{n}} \equiv \mathrm{C}_{\mathrm{nh}}$ for all odd $\mathrm{n} \geq 3$
- Dihedral Point Groups \rightarrow more than one axis of rotation

$$
D_{n}\binom{n 22, n 2}{\text { even } n \text { odd } n} \rightarrow C_{n}, \ldots, C_{n}^{n}=E, n C_{2}
$$

$$
32
$$

allene
$D_{n d}$ variable $\rightarrow C_{n}, \ldots, C_{n}^{n}=E, n C_{2}, n \sigma_{v}$

$D_{2 d}$
trans-1,2-dichloroethane

- High Symmetry Point Groups
- multiple primary axes of rotation

$$
T_{d} \rightarrow 4 C_{3}, 4 C_{3}^{2}
$$

$O_{h} \rightarrow 3 C_{4}, 3 C_{2}, 3 C_{4}^{3}, \ldots$

$$
I_{h} \rightarrow C_{5}, C_{6}, \ldots
$$

Classification of Molecules into Point Groups

1. Match symmetry elements of molecule with those of the character tables
of a point group (more on this later).

From
2. Use a flow chart:

Representations of Groups \rightarrow Character Tables

- Illustrations can describe effects of symmetry operations, but more convenient to use a representational shorthand notation
- Representations \rightarrow symbols that contain information associated with the entire set of symmetry operations of a point group
- Character Tables \rightarrow summary of relationships (characters) btw reps \& individual symmetry operations
Point Group

1.2 Symmetry and Group Theory

- General Organization of Character Tables Mulliken Symbols used to indicate $\Gamma_{\text {IR }}$

$C_{3 \mathrm{v}}$	E	$2 C_{3}$	$3 \sigma_{v}$
A_{1}	1	1	1
A_{2}	1	1	-1
E	2	-1	0

$$
\begin{array}{lll}
& =1 & \\
\text { then } \mathrm{A} \text { or } \mathrm{B} \\
\chi(\hat{E}) & =2 & \\
& =3 & \text { then } \mathrm{E} \\
& \text { then } \mathrm{T}
\end{array}
$$

For 1 dimensional irreps:

$$
\begin{aligned}
& \begin{array}{lll}
\chi\left(\hat{C}_{n}^{1}\right)=+1 & & \text { then } \mathrm{A} \text { (i.e. symmetric) } \\
=-1 & \text { then B (i.e. antisymmetric) }
\end{array} \\
& \chi\left(\perp \hat{C}_{n}^{1}\right) \text { or } \chi\left(\hat{\sigma}_{v}\right) \begin{array}{ll}
=+1 & \text { then Sub1 (e.g. } \left.A_{1}\right) \quad \begin{array}{l}
\text { Symmetry elements are usually, } \\
\text { but not always, organized by the }
\end{array} \\
\text { for }
\end{array} \\
& \text { then Sub2 following priority: } \\
& E>C_{n}>C_{n}{ }^{\prime}>i>S>\sigma_{h}>\sigma_{v}>\sigma_{d} \\
& \begin{array}{lll}
\chi(\hat{i}) & =+1 & \\
& =-1 & \\
\text { then Subg (i.e. gerade) } \\
& \text { then Subu (i.e. ungerade) }
\end{array} \\
& \text { if no î: } \quad \begin{aligned}
& & & \\
& =+1 & & \text { then Super' (e.g. } \left.A_{2}{ }^{\prime}\right) \\
& =-1 & & \text { then Super" }
\end{aligned}
\end{aligned}
$$

－Building a Simple Character Table

－Determine the effect of all symmetry operations on a series of geometrical basis vectors and tensors $x, y, z, R_{x}, R_{y}, R_{z}, x y, x z, y z, x^{2}-y^{2}, z^{2}, e t c$ ．

$$
\Rightarrow C_{2 v} \equiv E, C_{2}, \sigma_{v}, \sigma_{v}^{\prime}
$$

－e．g． $\mathrm{H}_{2} \mathrm{O}$

島	島	島
$E(\vec{x})=+\vec{x}$	$E(\vec{y})=+\vec{y}$	$E(\vec{z})=+\vec{z}$
$C_{2}(\vec{x})=-\vec{x}$	$C_{2}(\vec{y})=-\vec{y}$	$C_{2}(\vec{z})=+\vec{z}$
$\sigma_{x z}(\vec{x})=+\vec{x}$	$\sigma_{x z}(\vec{y})=-\vec{y}$	$\sigma_{x z}(\vec{z})=+\vec{z}$
$\sigma_{y z}(\vec{x})=-\vec{x}$	$\sigma_{y z}(\vec{y})=+\vec{y}$	$\sigma_{y z}(\vec{z})=+\vec{z}$
\vec{R}_{x}	\vec{R}_{y}	$\overrightarrow{\vec{R}_{z}}$
$E\left(\vec{R}_{x}\right)=+\vec{R}_{x}$	$E\left(\vec{R}_{y}\right)=+\vec{R}_{y}$	$E\left(\vec{R}_{z}\right)=+\vec{R}_{z}$
$C_{2}\left(\vec{R}_{x}\right)=-\vec{R}_{x}$	$C_{2}\left(\vec{R}_{y}\right)=-\vec{R}_{y}$	$C_{2}\left(\vec{R}_{z}\right)=+\vec{R}_{z}$
$\sigma_{x z}\left(\vec{R}_{x}\right)=-\vec{R}_{x}$	$\sigma_{x z}\left(\vec{R}_{y}\right)=+\vec{R}_{y}$	$\sigma_{x z}\left(\vec{R}_{z}\right)=-\vec{R}_{z}$
$\sigma_{y z}\left(\vec{R}_{x}\right)=+\vec{R}_{x}$	$\sigma_{y z}\left(\vec{R}_{y}\right)=-\vec{R}_{y}$	$\sigma_{y z}\left(\vec{R}_{z}\right)=-\vec{R}_{z}$

double－check accuracy of character table by ensuring that products of two operations still work．．．

- label irreps using rules defined previously...

	$\boldsymbol{C}_{\mathbf{2 v}}$	E	C_{2}	$\sigma_{x z}$	$\sigma_{y z}$
$A_{1} \Rightarrow \Gamma_{1}$	+1	+1	+1	+1	z
$A_{2} \Rightarrow \Gamma_{2}$	+1	+1	-1	-1	R_{z}
$B_{1} \Rightarrow \Gamma_{3}$	+1	-1	+1	-1	x or R_{y}
$B_{2} \Rightarrow \Gamma_{4}$	+1	-1	-1	+1	y or R_{x}

- totally symmetric representation is very special...
- always exists - defines the actual symmetry of the point group
- mathematically, only functions that are totally symmetric will have non-zero integrals when integrated over all space:

$$
\begin{aligned}
& \int_{-\infty}^{\infty} f(\tau) d \tau \neq 0 \quad \rightarrow \text { if } \quad f(\tau) \longmapsto A_{1} \\
& \int_{-\infty}^{\infty} f(\tau) d \tau=0 \quad \rightarrow \text { if } \quad f(\tau) \longmapsto \text { in } c_{2 v} \text { symmetry }
\end{aligned}
$$

Five Theorems for Complete Set of Irreps in a Point Group

- Sum of squares of the dimensions of Γ_{i} of a group $=$ the order of the group (h)

$$
\sum_{i}\left[\chi_{i}(\hat{E})\right]^{2}=h
$$

- Sum of squares of the characters in $\Gamma_{i}=$ the order of the group

$$
\sum_{\hat{R}}\left[\chi_{i}(\hat{R})\right]^{2}=h
$$

- Γ_{i} are mutually orthogonal (i.e. they define a minimal basis set)

$$
\sum_{\hat{R}} \chi_{i}(\hat{R}) \chi_{j}(\hat{R})=0 \text { for } i \neq j
$$

- For a given Γ_{i}, the characters of all operations belonging to the same class are identical
- ops can be turned into one another by changing reference frame
- Number of Γ_{i} equals the number of classes

$\boldsymbol{C}_{3 \mathrm{v}}$	E	$2 C_{3}$	$3 \sigma_{v}$
A_{1}	1	1	1
A_{2}	1	1	-1
E	2	-1	0

- not all point groups can constructed in this way
- can be completed by using theorems + other mathematical approaches
- luckily, you generally don't have to build character tables from scratch
- what about representations that don't give +1 and/or -1 as characters?

| $\mathbf{D}_{4 \mathbf{h}}$ | E | $2 C_{4}(\mathrm{z})$ | C_{2} | $2 C_{2}^{\prime}$ | $2 C^{\prime \prime}{ }_{2}$ | i | $2 S_{4}$ | σ_{h} | $2 \sigma_{v}$ | $2 \sigma_{d}$ | linear,
 rotations | quadratic
 functions | cubic
 functions |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $A_{1 g}$ | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | - | $\mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$ | - |
| $A_{2 g}$ | +1 | +1 | +1 | -1 | -1 | +1 | +1 | +1 | -1 | -1 | R_{z} | - | - |
| $B_{1 g}$ | +1 | -1 | +1 | +1 | -1 | +1 | -1 | +1 | +1 | -1 | - | $\mathrm{x}^{2}-\mathrm{y}^{2}$ | - |
| $B_{2 g}$ | +1 | -1 | +1 | -1 | +1 | +1 | -1 | +1 | -1 | +1 | - | xy | - |
| E_{g} | +2 | 0 | -2 | 0 | 0 | +2 | 0 | -2 | 0 | 0 | $\left(\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}\right)$ | $(\mathrm{xz}, \mathrm{yz})$ | - |
| $A_{1 u}$ | +1 | +1 | +1 | +1 | +1 | -1 | -1 | -1 | -1 | -1 | - | - | - |
| $A_{2 u}$ | +1 | +1 | +1 | -1 | -1 | -1 | -1 | -1 | +1 | +1 | z | - | $\mathrm{z}^{3}, \mathrm{z}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)$ |
| $B_{1 u}$ | +1 | -1 | +1 | +1 | -1 | -1 | +1 | -1 | -1 | +1 | - | - | xyz |
| $B_{2 u}$ | +1 | -1 | +1 | -1 | +1 | -1 | +1 | -1 | +1 | -1 | - | - | $\mathrm{z}\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)$ |
| E_{u} | +2 | 0 | -2 | 0 | 0 | -2 | 0 | +2 | 0 | 0 | (x, y) | - | $\left(\mathrm{xz}^{2}, \mathrm{yz} \mathrm{y}^{2}\right)\left(\mathrm{xy}^{2}, \mathrm{x}^{2} \mathrm{y}\right),\left(\mathrm{x}^{3}, \mathrm{y}^{3}\right)$ |

Degenerate Irreducible Representations

- So far, operations have all transformed into \pm themselves
- characters represent simple transformations (1x1 matrices)
- in some point groups \rightarrow transformation gives LC of vectors
- results in degenerate representations...
- e.g. let's look at the effect of a C_{3} rotation in $\mathrm{NH}_{3}\left(C_{3 v}\right)$ on (x, y, z)

looking from above, we see that the x, y axes transform into linear combinations of each other... \downarrow

$$
\begin{aligned}
& x^{\prime}=\cos \frac{2 \pi}{3} x-\sin \frac{2 \pi}{3} y=-\frac{1}{2} x-\frac{\sqrt{3}}{2} y \\
& y^{\prime}=\sin \frac{2 \pi}{3} x+\cos \frac{2 \pi}{3} y=+\frac{\sqrt{3}}{2} x-\frac{1}{2} y \\
& \text { or...(in matrix form) }
\end{aligned}
$$

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{rr}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right)\binom{x}{y}
$$

in this case, the (x, y) pair must be considered as inseparable since they require each other to be properly defined within $C_{3 v}$.

1.2 Symmetry and Group Theory

- how do we build the character table for $C_{3 v}$?
- remember - (x, y) must now be considered together...
- symmetry operations are $E, 2 C_{3}, 3 \sigma_{v}$
- characters of 2×2 transformation matrices are the traces of those matrices

$$
\operatorname{Tr}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a+d
$$

- within a class of operations
- matrices are not necessarily the same
- trace of the matrices must be identical

$\boldsymbol{C}_{3 \mathrm{v}}$	E	$2 C_{3}$	$3 \sigma_{v}$
A_{1}	1	1	1
A_{2}	1	1	-1
E	2	-1	0

Uses of Character Tables - Direct Products

- often important to know the symmetry of a function that results from the product of two or more other functions, i.e. $f=f_{1} \cdot f_{2}$
- symmetry of product function = direct product of components

$$
\text { if } f=f_{1} \cdot f_{2}, \text { and } \begin{aligned}
& f_{1} \mapsto \Gamma_{1} \\
& f_{2} \mapsto \Gamma_{2}
\end{aligned} \text { then } f \mapsto \Gamma_{\chi_{\text {DP }}=\Gamma_{1} \times \Gamma_{2} \text { diect product }}
$$

- DP obtained by multiplying the characters of each component Γ_{i}
- e.g. in $\mathrm{C}_{3 v}$ symmetry with $f_{1} \mapsto A_{1}$ and $f_{2} \mapsto A_{2}$

$$
\text { from } \left.C_{3 v} \text { char table } \Rightarrow \begin{array}{cccc}
A_{1} & +1 & +1 & +1 \\
A_{2} & +1 & +1 & -1 \\
\hline A_{1} \times A_{2} & = & (1)(1) & (1)(1) \\
& = & 1 & 1
\end{array}\right)
$$

a direct product involving the totally symmetric representation simply results in getting the same function back...

$$
\begin{aligned}
\Gamma_{s y m m} \times \Gamma_{i} & =\Gamma_{i} \\
A_{1} \times \Gamma_{i} & =\Gamma_{i}
\end{aligned}
$$

- e.g. in $\mathrm{C}_{3 \mathrm{v}}$ symmetry with $f_{1} \mapsto E$ and $f_{2} \mapsto E$

from $C_{3 v}$ char table \Rightarrow		E	$2 C_{3}$	$3 \sigma_{v}$	dimension of $E \times E$ is 4 ... but the greatest dimensionality Γ_{i} in $C_{3 v}$ is E (with 2) \rightarrow product is reducible
	E	+2	-1	0	
	E	+2	-1	0	
	$E \times E$	(2)(2)	(-1)(-1)	(0)(0)	
		(4)	1	0	????

- DP may result in a complex solution:
- product must be linear combination of irreps $\Rightarrow \Gamma_{\text {red }}=\Gamma_{1}+\Gamma_{2}+\ldots$
- any function can be broken down into a linear comb. of basis functions
- reducible reps can therefore be reduced into its component irreps
- can use a multiplication table to find that

$$
E \times E=A_{1}+A_{2}+E
$$

- we say that $E \times E$ contains A_{1}, A_{2}, and E

$\boldsymbol{C}_{3 \mathrm{v}}$	A_{1}	A_{2}	E
A_{1}	A_{1}	A_{2}	E
A_{2}	A_{2}	A_{1}	E
E	E	E	$A_{1}+A_{2}+E$

Uses of Character Tables - Reducible \& Irreducible Reps

- character table contains complete set of irreps for a group
- everything in the group can be reduced into LC of these irreps
- properties of a set of N operations represented by $\mathrm{N} \times \mathrm{N}$ matrix
- usually a reducible representation
- always possible to rearrange them to produce LC of irreps
- $\mathrm{N} \times \mathrm{N}$ matrix representing symmetry operations reduces to smaller 1×1, 2×2, and 3×3 matrices, which are the irreps \rightarrow i.e. block diagonalization

block diagonalization

1.2 Symmetry and Group Theory

- reduction formula to generate component irreps
- All reducible reps can be reduced to a linear combination of irreps:

$$
\chi_{\text {red }}(\hat{R})=\sum_{i} \mathrm{a}_{i} \chi_{i}(\hat{R})
$$

- coefficients for component irreps is calculated using reduction formula:

$$
\mathrm{a}_{i}=\frac{1}{h} \sum_{R} n_{R} \chi_{r e d}(\hat{R}) \chi_{i}(\hat{R})
$$

- $\chi_{\text {red }}(R)=$ character of the reducible representation, $\Gamma_{\text {red }}$ for operation R
- $\chi_{i}(R)=$ character of the irreducible representation, Γ_{i}, for operation R
- $a_{i}=$ number of times a particular irrep, Γ_{i}, occurs in the reducible rep
- e.g. $\mathrm{E} \times \mathrm{E}$ in $\mathrm{C}_{3 v}$

$\boldsymbol{C}_{\mathbf{3 v}}$	E	$2 C_{3}$	$3 \sigma_{v}$	
A_{1}	1	1	1	z
A_{2}	1	1	-1	R_{z}
E	2	-1	0	$(x, y),\left(\mathrm{R}_{x}, \mathrm{R}_{y}\right)$
$E \times E$	$(2)(2)$	$(-1)(-1)$	$(0)(0)$	
$\Gamma_{D P}$	4	1	0	

$\boldsymbol{C}_{\mathbf{3 v}}$	E	$2 C_{3}$	$3 \sigma_{v}$	
A_{1}	1	1	1	z
A_{2}	1	1	-1	R_{z}
E	2	-1	0	$(x, y),\left(\mathrm{R}_{x}, \mathrm{R}_{y}\right)$
$E \times E$	$(2)(2)$	$(-1)(-1)$	$(0)(0)$	
$\Gamma_{D P}$	4	1	0	

$$
\begin{aligned}
\mathrm{a}_{A_{1}} & =\frac{1}{h} \sum_{R}\left[n_{R}\right]\left[\chi_{r e d}(\hat{R})\right]\left[\chi_{A_{1}}(\hat{R})\right] \\
& =\frac{1}{6}(n_{\hat{E}}^{1} \overbrace{\chi_{r e d}(\hat{E})}^{4} \overbrace{\chi_{A_{1}}(\hat{E})}^{1}+n_{\hat{C}_{3}}^{2} \overbrace{\chi_{r e d}\left(\hat{C}_{3}\right)}^{1} \overbrace{\chi_{A_{1}}\left(\hat{C}_{3}\right)}^{1}+n_{\hat{\sigma}_{v}}^{3} \overbrace{\chi_{\text {red }}\left(\hat{\sigma}_{v}\right)}^{0} \overbrace{\chi_{A_{1}}\left(\hat{\sigma}_{v}\right)}^{1}) \\
& =\frac{1}{6} 1 \cdot 4 \cdot 1+2 \cdot 1 \cdot 1+3 \cdot 0 \cdot 1=0
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{a}_{A_{2}}=\frac{1}{6}({ }_{\left(n_{\hat{E}}\right.}^{1} \overbrace{\chi_{\text {red }}(\hat{E})}^{4} \overbrace{\chi_{A_{2}}(\hat{E})}^{1}+n_{\hat{C}_{3}}^{2} \overbrace{\chi_{\text {red }}}^{1} \hat{C}_{3}) \overbrace{\chi_{A_{2}}\left(\hat{C}_{3}\right)}^{1}+n_{\hat{\sigma}_{v}}^{3} \overbrace{\chi_{\text {red }}\left(\hat{\sigma}_{v}\right)}^{0} \overbrace{\chi_{A_{2}}\left(\hat{\sigma}_{v}\right)}^{1}) \\
& =\frac{1}{6} 1 \cdot 4 \cdot 1+2 \cdot 1 \cdot 1+3 \cdot 0 \cdot-1=1 \\
& \mathrm{a}_{E}=\frac{1}{6}(n_{\hat{E}}^{1} \overbrace{\chi_{\text {red }}(\hat{E})}^{4} \underbrace{2}_{\chi_{E}(\hat{E})}+n_{\hat{C}_{3}}^{2} \overbrace{\chi_{\text {red }}\left(\hat{C}_{3}\right)}^{1} \overbrace{\chi_{E}\left(\hat{C}_{3}\right)}^{1})+n_{\hat{\sigma}_{v}}^{3} \overbrace{\chi_{\text {red }}\left(\hat{\sigma}_{v}\right)}^{0} \underbrace{0}_{\chi_{E}\left(\hat{\sigma}_{v}\right)}) \\
& =\frac{1}{6} 1 \cdot 4 \cdot 2+2 \cdot 1 \cdot-1+3 \cdot 0 \cdot 0=1 \\
& \begin{aligned}
\Gamma_{E \times E} & =1 \cdot A_{1}+1 \cdot A_{2}+1 \cdot E \\
& =A_{1}+A_{2}+E
\end{aligned}
\end{aligned}
$$

Using Reducible Representations \rightarrow Molecular Vibrations

- symmetry of molecular motions determined by generating appropriate reducible representations!
- use local cartesian coordinates for all N atoms in the molecule
- these describe all $3 N$ nuclear motions that are possible
- break down into: translations, vibrations, and rotations
- e.g. determine symmetry of all
vibrational modes for $\mathrm{H}_{2} \mathrm{O}$:
there are three sets of cartesian coordinates - i.e. 9 basis vectors

$\boldsymbol{C}_{2 \mathrm{v}}$	E	C_{2}	$\sigma_{x z}$	$\sigma_{y z}$
A_{1}	+1	+1	+1	+1
A_{2}	+1	+1	-1	-1
B_{1}	+1	-1	+1	-1
B_{2}	+1	-1	-1	+1

perform all operations on every basis
vector: three possible outcomes:

$$
\begin{aligned}
+1 & \rightarrow \text { no change } \\
-1 & \rightarrow \text { reversed }
\end{aligned}
$$

$$
0 \rightarrow \text { change in position }
$$

- determine the symmetry of all vibrational modes for $\mathrm{H}_{2} \mathrm{O}$

- this $3 N$ representation can be reduced into its component irreducible representations:

$$
\Gamma_{3 N}^{\left(C_{2 N}\right)}=\mathrm{a}_{A_{1}} A_{1}+\mathrm{a}_{A_{2}} A_{2}+\mathrm{a}_{B_{1}} B_{1}+\mathrm{a}_{B_{2}} B_{2}=3 A_{1}+1 A_{2}+3 B_{1}+2 B_{2}
$$

- represents symmetry of all nuclear motions:

$$
\Gamma_{3 N}=\Gamma_{\text {trans }}+\Gamma_{\text {vib }}+\Gamma_{\text {rot }}
$$

- only want vibrational degrees of freedom
- must remove translations \& rotations
- character table gives answer
- translations along x, y, z transform as x, y, z
- rotations around x, y, z transform as R_{x}, R_{y}, R_{z}

$\boldsymbol{C}_{2 \mathrm{v}}$	E	C_{2}	$\sigma_{x z}$	$\sigma_{y z}$	
A_{1}	+1	+1	+1	+1	z
A_{2}	+1	+1	-1	-1	R_{z}
B_{1}	+1	-1	+1	-1	x, R_{y}
B_{2}	+1	-1	-1	+1	y, R_{x}

- remove these and the remainder must be the vibrations!

$$
\begin{aligned}
\Gamma_{\text {vib }} & =\Gamma_{3 N}-\Gamma_{\text {trans }}-\Gamma_{\text {rot }} \\
& =\left[3 A_{1}+A_{2}+3 B_{1}+2 B_{2}\right]-\left[A_{1}+B_{1}+B_{2}\right]-\left[A_{2}+B_{1}+B_{2}\right] \\
& =2 A_{1}+1 B_{1} \quad \text { Chem } 529 \text { (2009-W2) }
\end{aligned}
$$

Visualizing Molecular Vibrations: Using Internal Coordinates

- just determined that $\mathrm{H}_{2} \mathrm{O}$ has
- three fundamental vibrational modes (a.k.a. normal modes)
- with the following symmetry: A_{1}, A_{1}, and B_{1}
- but... what do these look like?
- this can be done by group theory...
- much easier if we modify our basis vectors \rightarrow use internal coordinates
- int coord are chemically more relevant (correspond to largest forces)
- distances (r) \equiv bond distances
- angles $(\theta) \equiv$ bond angles
- dihedral angles $(\phi) \equiv$ bond torsion angles
- intrinsically exclude translations \& rotations

- use OH bond distances in $\mathrm{H}_{2} \mathrm{O}$ as a basis vectors.

- the opposite of a stretch is a compression such that
- what happens to these two vectors when we operate on them...

$$
\Gamma_{\mathrm{OH}}=A_{1}+B_{1}
$$

	E	C_{2}	$\sigma_{x z}$	$\sigma_{y z}$
$\Gamma_{\text {red }}$	2	0	2	0

- reducible representation is for both OH stretches!
- used Δr_{1} and $\Delta r_{2} \rightarrow A_{1} \& B_{1}$ stretches therefore involve BOTH Δr_{1} and Δr_{2}
- must build SALCs of the component vectors
- SALC = symmetry-adapted linear combination

Constructing Symmetry Adapted Linear Combinations

- transform set of localized functions that do NOT transform within a point group into an analogous set of delocalized functions that do!
- used in many areas of chemistry \rightarrow MO theory, vibrational analysis, etc.
- anywhere where symmetry is useful - SALCs must be invoked
- projection of localized functions onto correct symmetry irreps

$$
\begin{gathered}
\text { projection } \\
\text { operator } \\
\text { for } \Gamma_{i}
\end{gathered} \longrightarrow \hat{P}^{i}(\phi)=\frac{l_{i}}{h} \sum_{R} \chi_{i}(R) \hat{R}(\phi) \text { apply operation on a basis vector }_{\text {dimension of ith irrep }}^{\text {aper }}
$$

- important things to remember:
- each operation must be done independently (can't do just one per class!)
- procedure yields unnormalized SALCs (must be normalized)
- e.g. $\mathrm{H}_{2} \mathrm{O}$ (again!)

$$
S_{i} \equiv \hat{P}_{i}\left(\Delta r_{1}\right) \propto \sum_{R} \chi_{i}(R) \hat{R}\left(\Delta r_{1}\right)
$$

- construct the functions $\left(S_{i}\right)$ from the internal coordinates (Δr)
- look at Δr_{1} first... and how it transforms in A_{1}

$$
\begin{aligned}
S_{A_{1}} & \propto(1)\left[\hat{E}\left(\Delta r_{1}\right)\right]+(1)\left[\hat{C}_{2}\left(\Delta r_{1}\right)\right]+(1)\left[\hat{\sigma}_{x z}\left(\Delta r_{1}\right)\right]+(1)\left[\hat{\sigma}_{y z}\left(\Delta r_{1}\right)\right] \\
& \propto(1)\left[\Delta r_{1}\right]+(1)\left[\Delta r_{2}\right]+(1)\left[\Delta r_{1}\right]+(1)\left[\Delta r_{2}\right] \\
& \propto \Delta r_{1}+\Delta r_{2} \quad \begin{array}{l}
\text { this only works if component } \\
\text { functions are orthogonal! }
\end{array}
\end{aligned}
$$

- this must be normalized $\rightarrow N=\frac{1}{\sqrt{\sum_{j} c_{j}^{2}}}$

$$
S_{A_{1}}=\frac{1}{\sqrt{2}}\left(\Delta r_{1}+\Delta r_{2}\right)
$$

- for B_{1} symmetry:

$$
\begin{aligned}
& S_{B_{1}} \propto(1)\left[\hat{E}\left(\Delta r_{1}\right)\right]+(-1)\left[\hat{C}_{2}\left(\Delta r_{1}\right)\right]+(1)\left[\hat{\sigma}_{x z}\left(\Delta r_{1}\right)\right]+(-1)\left[\hat{\sigma}_{y z}\left(\Delta r_{1}\right)\right] \\
& \propto(1)\left[\Delta r_{1}\right]+(-1)\left[\Delta r_{2}\right]+(1)\left[\Delta r_{1}\right]+(-1)\left[\Delta r_{2}\right] \\
&\left.\propto \Delta r_{1}-\Delta r_{2}\right] \\
& S_{B_{1}}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

- The stretching vibrational modes are therefore
- $A_{1} \rightarrow$ symmetric linear combination of Δr_{1} and Δr_{2}
- $B_{1} \rightarrow$ antisymmetric linear combination of Δr_{1} and Δr_{2}
- vibrational spectroscopy \rightarrow SALCs are referred to as symmetry coordinates

$$
S_{A_{1}}=\frac{1}{\sqrt{2}}\left(\Delta r_{1}+\Delta r_{2}\right) \quad S_{B_{1}}=\frac{1}{\sqrt{2}}\left(\Delta r_{1}-\Delta r_{2}\right)
$$

- we still have one vibrational mode left... (the other A_{1} mode)
- we have one internal coordinate left... the $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bending mode
- performing symmetry operations on this coordinate gives...

	E	C_{2}	$\sigma_{x z}$	$\sigma_{y z}$
$\Gamma_{\text {red }}$	1	1	1	1
	$\Gamma_{\text {НОН }}$	$=A_{1}$		

- $1^{\text {st }}$ order approximation of the normal modes for $\mathrm{H}_{2} \mathrm{O}$ are...

$$
\begin{aligned}
& S_{A_{1}}=\frac{1}{\sqrt{2}}\left(\Delta r_{1}+\Delta r_{2}\right) \\
& S_{A_{1}}=\Delta \theta \\
& S_{B_{1}}=\frac{1}{\sqrt{2}}\left(\Delta r_{1}-\Delta r_{2}\right)
\end{aligned}
$$

these two modes have the same symmetry and therefore can mix to form linear combinations...
normal coordinate analysis allows for such mixing and uses experimental data to determine extent of mixing in TRUE normal modes.

- e.g. vibrational modes of $\left[\mathrm{NO}_{3}\right]^{-}$
- find the point group of the molecule \rightarrow
- operate using Cartesian axes of each atom

$D_{3 h}$	E	$2 C_{3}$	$3 C_{2}$	σ_{h}	$2 S_{3}$	$3 \sigma_{v}$
$\Gamma_{3 N}$	12	0	-2	4	-2	2

- reduce the representation...

$$
\Gamma_{3 N}=A_{1}^{\prime}+A_{2}^{\prime}+3 E^{\prime}+2 A_{2}^{\prime \prime}+E^{\prime \prime}
$$

- remove translations \& rotations

$D_{3 h}$	E	$2 C_{3}$	$3 C_{2}$	σ_{h}	$2 S_{3}$	$3 \sigma_{v}$		
$\mathrm{~A}_{1}{ }^{\prime}$	1	1	1	1	1	1		z^{2}
$\mathrm{~A}_{2}{ }^{\prime}$	1	1	-1	1	1	-1	R_{z}	
E^{\prime}	2	-1	0	2	-1	0	(x, y)	$\left(x^{2}-y^{2}, x y\right)$
$\mathrm{A}_{1}{ }^{\prime \prime}$	1	1	1	-1	-1	-1		
$\mathrm{~A}_{2}{ }^{\prime \prime}$	1	1	-1	-1	-1	1	z	
$\mathrm{E}^{\prime \prime}$	2	-1	0	-2	1	0	$\left(R_{x}, R_{y}\right)$	$(x z, y z)$

$$
\begin{aligned}
\Gamma_{v i b} & =\Gamma_{3 N}-\Gamma_{\text {trans }}-\Gamma_{r o t}=\Gamma_{3 N}-\Gamma_{x, y, z}-\Gamma_{R_{x}, R_{y}, R_{z}} \\
& =\left[A_{1}^{\prime}+A_{2}^{\prime}+3 E^{\prime}+2 A_{2}^{\prime \prime}+E^{\prime \prime}\right]-\left[E^{\prime}+A_{2}^{\prime \prime}\right]-\left[A_{2}^{\prime}+E_{2}^{\prime \prime}\right] \\
& =A_{1}^{\prime}+2 E^{\prime}+A_{2}^{\prime \prime}
\end{aligned}
$$

1.2 Symmetry and Group Theory

- determine contributions from stretching vibrations
- use bond distances are basis vectors
- generate a reducible representation

$D_{3 h}$	E	$2 C_{3}$	$3 C_{2}$	σ_{h}	$2 S_{3}$	$3 \sigma_{v}$
$\Gamma_{\Delta r}$	3	0	1	3	0	1

- find the projections of the basis vector to generate appropriate SALCs

$$
\begin{aligned}
& S_{A_{1}^{\prime}} \propto(1)\left[\hat{E}\left(\Delta r_{1}\right)\right]+(1)\left[\hat{C}_{3}^{1}\left(\Delta r_{1}\right)+\hat{C}_{3}^{2}\left(\Delta r_{1}\right)\right]+(1)\left[\hat{C}_{2}\left(\Delta r_{1}\right)+\hat{C}_{2}^{\prime}\left(\Delta r_{1}\right)+\hat{C}_{2}^{\prime \prime}\left(\Delta r_{1}\right)\right] \\
&+(1)\left[\hat{\sigma}_{h}\left(\Delta r_{1}\right)\right]+(1)\left[\hat{S}_{3}^{1}\left(\Delta r_{1}\right)+\hat{S}_{3}^{2}\left(\Delta r_{1}\right)\right]+(1)\left[\hat{\sigma}_{v}\left(\Delta r_{1}\right)+\hat{\sigma}_{v}^{\prime}\left(\Delta r_{1}\right)+\hat{\sigma}_{v}^{\prime \prime}\left(\Delta r_{1}\right)\right] \\
& \propto(1)\left[\Delta r_{1}\right]+(1)\left[\Delta r_{2}+\Delta r_{3}\right]+(1)\left[\Delta r_{1}+\Delta r_{2}+\Delta r_{3}\right]+(1)\left[\Delta r_{1}\right]+(1)\left[\Delta r_{2}+\Delta r_{3}\right]+(1)\left[\Delta r_{1}+\Delta r_{2}+\Delta r_{3}\right] \\
& \propto \Delta r_{1}+\Delta r_{2}+\Delta r_{3} \\
& S_{A_{1}^{\prime}}= \frac{1}{\sqrt{3}}\left\langle r_{1}+\Delta r_{2}+\Delta r_{3}\right) \\
& S_{E^{\prime}} \propto(2) \Delta r_{1}+(-1) \Delta r_{2}+\Delta r_{3}+(0) \Delta r_{1}+\Delta r_{2}+\Delta r_{3}+(2) \Delta r_{1}+(-1) \Delta r_{2}+\Delta r_{3}+(0) \Delta r_{1}+\Delta r_{2}+\Delta r_{3} \\
& \propto 2 \Delta r_{1}-\Delta r_{2}-\Delta r_{3} \\
& S_{E^{\prime}}= \frac{1}{\sqrt{6}} 2 \Delta r_{1}-\Delta r_{2}-\Delta r_{3}
\end{aligned}
$$

1．2 Symmetry and Group Theory

－applying $S_{A^{1}}$ on $\Delta r_{2,3}$ in $D_{3 h}$

\[

\]

$$
\begin{aligned}
& S_{A_{1}^{\prime}} \propto(1)\left[\hat{E}\left(\Delta \vec{r}_{2}\right)\right]+(1)\left[\hat{C}_{3}^{1}\left(\Delta \vec{r}_{2}\right)+\hat{C}_{3}^{2}\left(\Delta \vec{r}_{2}\right)\right]+(1)\left[\hat{C}_{2}\left(\Delta \vec{r}_{2}\right)+\hat{C}_{2}^{\prime}\left(\Delta \vec{r}_{2}\right)+\hat{C}_{2}^{\prime \prime}\left(\Delta \vec{r}_{2}\right)\right] \\
& +(1) \hat{\sigma}_{h}\left(\Delta \vec{r}_{2}\right)+(1)\left[\hat{S}_{3}^{1}\left(\Delta \vec{r}_{2}\right)+\hat{S}_{3}^{2}\left(\Delta \vec{r}_{2}\right)\right]+(1)\left[\hat{\sigma}_{v}\left(\Delta \vec{r}_{2}\right)+\hat{\sigma}_{v}^{\prime}\left(\Delta \vec{r}_{2}\right)+\hat{\sigma}_{v}^{\prime \prime}\left(\Delta \vec{r}_{2}\right)\right] \\
& \left.\left.\propto \text { (1) } \Delta \vec{r}_{2}+\text { (1) } \Delta \vec{r}_{3}+\Delta \vec{r}_{1}+\text { (1) 【 } \vec{r}_{3}+\Delta \vec{r}_{1}+\Delta \vec{r}_{2}\right\rfloor+ \text { (1) 【 } \vec{r}_{2}\right\rceil+ \text { (1) 【 } \vec{r}_{3}+\Delta \vec{r}_{1} \rrbracket+(1) 【 \vec{r}_{3}+\Delta \vec{r}_{1}+\Delta \vec{r}_{2}^{-} \\
& \propto \Delta \vec{r}_{1}+\Delta \vec{r}_{2}+\Delta \vec{r}_{3} \\
& S_{A_{1}^{\prime}}=\frac{1}{\sqrt{3}}\left\langle\overrightarrow{r_{1}}+\Delta \vec{r}_{2}+\Delta \vec{r}_{3}\right\rangle \\
& S_{A_{1}^{\prime}} \propto(1)\left[\hat{E}\left(\Delta \vec{r}_{3}\right)\right]+(1)\left[\hat{C}_{3}^{1}\left(\Delta \vec{r}_{3}\right)+\hat{C}_{3}^{2}\left(\Delta \vec{r}_{3}\right)\right]+(1)\left[\hat{C}_{2}\left(\Delta \vec{r}_{3}\right)+\hat{C}_{2}^{\prime}\left(\Delta \vec{r}_{3}\right)+\hat{C}_{2}^{\prime \prime}\left(\Delta \vec{r}_{3}\right)\right] \\
& +(1) \hat{\sigma}_{h}\left(\Delta \vec{r}_{3}\right)+(1)\left[\hat{S}_{3}^{1}\left(\Delta \vec{r}_{3}\right)+\hat{S}_{3}^{2}\left(\Delta \vec{r}_{3}\right)\right]+(1)\left[\hat{\sigma}_{v}\left(\Delta \vec{r}_{3}\right)+\hat{\sigma}_{v}^{\prime}\left(\Delta \vec{r}_{3}\right)+\hat{\sigma}_{v}^{\prime \prime}\left(\Delta \vec{r}_{3}\right)\right] \\
& \left.\propto \text { (1) } \Delta \vec{r}_{3}+(1) \Delta \vec{r}_{2}+\Delta \vec{r}_{1}+(1) 【 \vec{r}_{2}+\Delta \vec{r}_{3}+\Delta \vec{r}_{1} \rrbracket+\text { (1) 【 } \vec{r}_{3}\right\rceil+ \text { (1) 【 } \vec{r}_{2}+\Delta \vec{r}_{1} \rrbracket+(1) 【 \vec{r}_{2}+\Delta \vec{r}_{3}+\Delta \vec{r}_{1}^{-} \\
& \propto \Delta \vec{r}_{1}+\Delta \vec{r}_{2}+\Delta \vec{r}_{3} \\
& S_{A_{1}^{\prime}}=\frac{1}{\sqrt{3}}\left\langle\overrightarrow{r_{1}}+\Delta \vec{r}_{2}+\Delta \vec{r}_{3}\right\rangle
\end{aligned}
$$

1.2 Symmetry and Group Theory

- for E^{\prime} symmetry, there must be two vibrations that transform together
- we have found one of them: $S_{E^{\prime}}^{(1)}=\frac{1}{\sqrt{6}} 2 \Delta \vec{r}_{1}-\Delta \vec{r}_{2}-\Delta \vec{r}_{3}$
- finding the second vibrational mode - use rules of mathematical groups
- applying any operation of the group on the above function must lead to:
- \pm itself
- \pm another degenerate function (in this case, its only partner)
- a linear combination of these degenerate functions
- apply C_{3} to existing E^{\prime} vibrational mode $\quad f \propto \hat{C}_{3}\left(S_{E^{\prime}}(1)\right)=-\Delta \vec{r}_{1}+2 \Delta \vec{r}_{2}-\Delta \vec{r}_{3}$
- same thing as doing the projection of Δr_{2} onto E^{\prime}
- is this new function orthogonal to the first?

$$
\begin{aligned}
& \left.S_{E^{\prime}}^{(1)} \propto+2 \Delta \vec{r}_{1}-1 \Delta \vec{r}_{2}-1 \Delta \vec{r}_{3}\right]+2-1+-1+2+-1-1 \\
& \left.\hat{C}_{3} S_{E^{\prime}}^{(1)} \propto-1 \Delta \vec{r}_{1}+2 \Delta \vec{r}_{2}-1 \Delta \vec{r}_{3}\right\}=-2+-2++1=-3 \Leftarrow n o!
\end{aligned}
$$

- f is not a complementary basis function but $\rightarrow \quad f=c_{1} S_{E^{\prime}}^{(1)}+c_{2} S_{E^{\prime}}^{(2)}$
- modify f by adding in some amount of first basis vector \rightarrow

$$
f^{\prime}=f+\alpha S_{E^{\prime}}^{(1)}=f+\frac{1}{2} S_{E^{\prime}}^{(1)}
$$

$$
\begin{aligned}
f^{\prime} & =f+\frac{1}{2} S_{E^{\prime}}^{(1)} \\
& \propto-1 \Delta \vec{r}+2 \Delta \vec{r}_{2}-1 \Delta \vec{r}_{3}+\frac{1}{2}+2 \Delta \vec{r}_{1}-1 \Delta \vec{r}_{2}-1 \Delta \vec{r}_{3} \\
& \propto 0 \Delta \vec{r}_{1}+\frac{3}{2} \Delta \vec{r}_{2}-\frac{3}{2} \Delta \vec{r}_{3} \\
& \propto \Delta \vec{r}_{2}-\Delta \vec{r}_{3} \\
& \\
& \\
& \\
& \text { is this new function (f } f^{\prime} \text {) orthogonal? } \\
& S_{E^{\prime}}^{(1)} \propto+2 \Delta \vec{r}_{1}-1 \Delta \vec{r}_{2}-1 \Delta \vec{r}_{3} \\
& f^{\prime} \propto+0 \Delta \vec{r}_{1}+1 \Delta \vec{r}_{2}-1 \Delta \vec{r}_{3} \\
& \\
& =0+20+-1+1+-1-1
\end{aligned}
$$

- what do these look like?

$$
S_{E^{\prime}}^{(1)}=\frac{\frac{1}{\sqrt{6}} 2 \Delta \vec{r}_{1}-\Delta \vec{r}_{2}-\Delta \vec{r}_{3}}{S_{E^{\prime}}^{(2)}=\frac{1}{\sqrt{2}} \Delta \vec{r}_{2}-\Delta \vec{r}_{3}}
$$

1.2 Symmetry and Group Theory

- let's consider what we have just determined...
- formed pair of vibrational modes whom together transform as E^{\prime} in $D_{3 h}$
- but these basis functions are not unique!
- other linear combinations of these basis functions will also meet the criteria that we have set out:
- together they "span the space" of E^{\prime}
- they are orthogonal to each other

$$
\begin{aligned}
& S_{E^{\prime}}^{(1)}=\frac{1}{\sqrt{6}} 2 \Delta \vec{r}_{1}-\Delta \vec{r}_{2}-\Delta \vec{r}_{3} \\
& S_{E^{\prime}}^{(2)}=\frac{1}{\sqrt{2}} \Delta \vec{r}_{2}-\Delta \vec{r}_{3}
\end{aligned}
$$

- e.g. what if we do a combination of our existing functions?

$$
\begin{aligned}
S_{E^{\prime}}^{\left(1^{\prime}\right)} & \propto S_{E^{\prime}}^{(1)}+S_{E^{\prime}}^{(2)} \\
& \propto 2 \Delta \vec{r}_{1}-\Delta \vec{r}_{2}-\Delta \vec{r}_{3}+\Delta \vec{r}_{2}-\Delta \vec{r}_{3} \\
& \propto \Delta \vec{r}_{1}-\Delta \vec{r}_{3} \Rightarrow \Rightarrow \Rightarrow S_{E^{\prime}}^{\left(2^{\prime}\right)} \propto 2 \Delta \vec{r}_{2}-\Delta \vec{r}_{1}-\Delta \vec{r}_{3}
\end{aligned}
$$

- chosen description is only one of the possible representations of E^{\prime}
- thus far, we have evaluated only two of the components...

$$
\begin{aligned}
& \Gamma_{v i b}=\underbrace{A_{1}^{\prime}+E^{\prime}}_{\downarrow}+E^{\prime}+A_{2}^{\prime \prime} \\
& \text { from bond stretches } \\
& S_{\text {H1 }}^{\Delta r} \rightarrow \frac{1}{\sqrt{3}} \Delta r_{1}+\Delta r_{2}+\Delta r_{3} \\
& S_{E^{\prime}}^{\Delta r} \rightarrow \frac{1}{\sqrt{6}} 2 \Delta \vec{r}_{1}-\Delta \vec{r}_{2}-\Delta \vec{r}_{3} \quad \& \quad \frac{1}{\sqrt{2}} \Delta \vec{r}_{2}-\Delta \vec{r}_{3}
\end{aligned}
$$

- now look at bond bending (angular degrees of freedom)

$D_{3 h}$	E	$2 C_{3}$	$3 C_{2}$	σ_{h}	$2 S_{3}$	$3 \sigma_{v}$
$\Gamma_{\Delta \theta}$	3	0	1	3	0	1
$\Gamma_{\Delta \theta}=A_{1}^{\prime}+E^{\prime}$						

- project out the A_{1} ' solution

- this solution doesn't make any sense - throw it out

$$
S_{A 1}^{\Delta \theta} \rightarrow \frac{1}{\sqrt{3}} \Delta \theta_{1}+\Delta \theta_{2}+\Delta \theta_{3}
$$

- what about the E' solution?

$$
\begin{aligned}
& \quad S_{E^{\prime}}^{\Delta \theta}(1) \\
\& \quad & \rightarrow \frac{1}{\sqrt{6}} 2 \Delta \theta_{1}-\Delta \theta_{2}-\Delta \theta_{3} \\
S_{E^{\prime}}^{\Delta \theta}(1) & \rightarrow \frac{1}{\sqrt{2}} \Delta \theta_{2}-\Delta \theta_{3}
\end{aligned}
$$

- we are now down to one vibrational mode that is unassigned (and one failure)

$$
\begin{aligned}
& \Gamma_{v i b}=\underbrace{A_{1}^{\prime}+E^{\prime}}_{\downarrow}+\underbrace{E^{\prime}}+A_{2}^{\prime \prime} \\
& \text { from bond stretches } \\
& \text { from bending modes } \rightarrow S_{E^{\prime}}^{\Delta \theta} \rightarrow \frac{1}{\sqrt{6}} 2 \Delta \vec{\theta}_{1}-\Delta \vec{\theta}_{2}-\Delta \vec{\theta}_{3} \\
& \begin{array}{l}
S_{A 1}^{\Delta r} \rightarrow \frac{1}{\sqrt{3}} \Delta r_{1}+\Delta r_{2}+\Delta r_{3} \\
S_{E^{\prime}}^{\Delta r} \rightarrow \frac{1}{\sqrt{6}} 2 \Delta \vec{r}_{1}-\Delta \vec{r}_{2}-\Delta \vec{r}_{3} \quad \& \quad \frac{1}{\sqrt{2}} \Delta \vec{r}_{2}-\Delta \vec{r}_{3}
\end{array} \\
& \& \quad \frac{1}{\sqrt{2}} \Delta \vec{\theta}_{2}-\Delta \vec{\theta}_{3}
\end{aligned}
$$

- let us consider the molecule again, however...
- θ is defined in the plane - only need two coordinates describe this plane since $\theta_{1}+\theta_{2}+\theta_{3}=2 \pi$
- the additional coordinate that describes the geometry of this
 molecule is NOT a simple bond angle... it must be related to a dihedral angle \rightarrow out of plane distortion!

$$
S_{\Gamma_{\Delta \phi}}^{\Delta \phi} \rightarrow \frac{1}{\sqrt{3}} \Delta \phi_{1}+\Delta \phi_{2}+\Delta \phi_{3}
$$

- the rejected mode can exist if we allow for distortion out of the plane
- by inspection, this out-of-plane distortion has $A_{2}{ }^{\prime \prime}$ symmetry!

- the symmetry coordinates for $\mathrm{NO}_{3}{ }^{-}$are therefore:

$$
A_{1}^{\prime} \mapsto \quad S_{A 1}^{\Delta r}=\frac{1}{\sqrt{3}} \Delta r_{1}+\Delta r_{2}+\Delta r_{3}
$$

$$
A_{2}^{\prime \prime} \mapsto \quad S_{k \prime}^{\Delta \vec{\phi}}=\frac{1}{\sqrt{3}} \Delta \vec{\phi}_{1}+\Delta \vec{\phi}_{2}+\Delta \vec{\phi}_{3}
$$

Symmetry in MO theory \rightarrow Making SALCS from AOs

- same approach used to create delocalized fragment molecular orbitals (FMOs) from localized atomic orbitals (or MOs)...
- use symmetry to build orbitals that transform properly in the point group
- e.g., the orbitals of the cyclopropenyl cation
- point group $\rightarrow D_{3 h}$ (same as $\mathrm{NO}_{3}{ }^{-}$)
- use the $2 p_{z}$ orbitals and see how they transform

$D_{3 \mathrm{~h}}$	E	$2 C_{3}$	$3 C_{2}$	σ_{h}	$2 S_{3}$	$3 \sigma_{v}$
$A_{1}{ }^{\prime}$	1	1	1	1	1	1
$A_{2}{ }^{\prime}$	1	1	-1	1	1	-1
E^{\prime}	2	-1	0	2	-1	0
$A_{1}{ }^{\prime \prime}$	1	1	1	-1	-1	-1
$A_{2}{ }^{\prime \prime}$	1	1	-1	-1	-1	1
$E^{\prime \prime}$	2	-1	0	-2	1	0

$D_{3 \mathrm{~h}}$	E	$2 C_{3}$	$3 C_{2}$	σ_{h}	$2 S_{3}$	$3 \sigma_{v}$
$\Gamma_{\text {red }}$	3	0	-1	-3	0	1

- reduce the representation \rightarrow

$D_{3 \mathrm{~h}}$	E	$2 C_{3}$	$3 C_{2}$	σ_{h}	$2 S_{3}$	$3 \sigma_{v}$
$\Gamma_{\text {red }}$	3	0	-1	-3	0	1
	$\Gamma_{\text {red }}=A_{2}^{\prime \prime}+E^{\prime \prime}$					

- Use the projection method to determine appropriate SALCs

$$
\psi_{i} \equiv \hat{P}_{i}\left(p_{z}(1)\right) \propto \sum_{R} \chi_{i}(R) \hat{R}\left(p_{z}(1)\right)
$$

$$
\begin{aligned}
& \psi_{A_{2}^{\prime \prime}} \propto(1)\left[\hat{E}\left(p_{z}^{(1)}\right)\right]+(1)\left[\hat{C}_{3}^{1}\left(p_{z}^{(1)}\right)\right]+(1)\left[\hat{C}_{3}^{2}\left(p_{z}^{(1)}\right)\right]+(-1)\left[\hat{C}_{2}\left(p_{z}^{(1)}\right)\right] \\
&+(-1)\left[\hat{C}_{2}^{\prime}\left(p_{z}^{(1)}\right)\right]+(-1)\left[\hat{C}_{2}^{\prime \prime}\left(p_{z}^{(1)}\right)\right]+(-1)\left[\hat{\sigma}_{h}\left(p_{z}^{(1)}\right)\right]+(-1)\left[\hat{S}_{3}^{1}\left(p_{z}^{(1)}\right)\right] \\
&+(-1)\left[\hat{S}_{3}^{2}\left(p_{z}^{(1)}\right)\right]+(1)\left[\hat{\sigma}_{v}\left(p_{z}^{(1)}\right)\right]+(1)\left[\hat{\sigma}_{v}^{\prime}\left(p_{z}^{(1)}\right)\right]+(1)\left[\hat{\sigma}_{v}^{\prime \prime}\left(p_{z}^{(1)}\right)\right] \\
&\left.\propto p_{z}^{(1)}+p_{z}^{(2)}+p_{z}^{(3)} \Rightarrow \psi_{A_{2}^{\prime \prime}}=\frac{1}{\sqrt{3}}\left(p_{z}^{(1)}+p_{z}^{(2)}+p_{z}^{(3)}\right)\right] \\
& \psi_{E^{\prime \prime}} \propto(2)\left[\hat{E}\left(p_{z}^{(1)}\right)\right]+(-1)\left[\hat{C}_{3}^{1}\left(p_{z}^{(1)}\right)\right]+(-1)\left[\hat{C}_{3}^{2}\left(p_{z}^{(1)}\right)\right]+(0)\left[\hat{C}_{2}\left(p_{z}^{(1)}\right)\right] \\
&+(0)\left[\hat{C}_{2}^{\prime}\left(p_{z}^{(1)}\right)\right]+(0)\left[\hat{C}_{2}^{\prime \prime}\left(p_{z}^{(1)}\right)\right]+(-2)\left[\hat{\sigma}_{h}\left(p_{z}^{(1)}\right)\right]+(1)\left[\hat{S}_{3}^{1}\left(p_{z}^{(1)}\right)\right] \\
&+(1)\left[\hat{S}_{3}^{2}\left(p_{z}^{(1)}\right)\right]+(0)\left[\hat{\sigma}_{v}\left(p_{z}^{(1)}\right)\right]+(0)\left[\hat{\sigma}_{v}^{\prime}\left(p_{z}^{(1)}\right)\right]+(0)\left[\hat{\sigma}_{v}^{\prime \prime}\left(p_{z}^{(1)}\right)\right] \\
& \propto 2 p_{z}^{(1)}-p_{z}^{(2)}-p_{z}^{(3)} \Rightarrow \psi_{E^{\prime \prime}}=\frac{1}{\sqrt{6}}\left(2 p_{z}^{(1)}-p_{z}^{(2)}-p_{z}^{(3)}\right)
\end{aligned}
$$

- SALCs generated from the $2 p_{z}$ orbitals in the cyclopropenyl radical are therefore

$\psi_{A_{2}^{\prime 2}}=\frac{1}{\sqrt{3}}\left(p_{z}^{(1)}+p_{z}^{(2)}+p_{z}^{(3)}\right)$
$\psi_{E^{\prime}}^{(1)}=\frac{1}{\sqrt{6}}\left(2 p_{z}^{(1)}-p_{z}^{(2)}-p_{z}^{(3)}\right)$

$$
\psi_{E^{\prime}}^{(2)}=\frac{\frac{1}{\sqrt{2}}\left(p_{z}^{(2)}-p_{z}^{(3)}\right)}{/}
$$

through orthogonality requirement

1.2 Symmetry and Group Theory

Determining Symmetry of Transition Integrals

- use symmetry to evaluate transition integrals for spectroscopy
- Need to know symmetry of
- atomic/molecular wavefunctions

$$
f \propto\left\langle\Psi_{g}\right| \hat{M}\left|\Psi_{e}\right\rangle^{2}
$$

- Transition moment operator (\hat{M})
- use direct products to get symmetry of integral $\rightarrow \Gamma_{f} \mapsto \Gamma_{\Psi_{g}} \times \Gamma_{\hat{M}} \times \Gamma_{\Psi_{c}}$
- If AOs centred at point of point group \rightarrow easy to get symmetry
remember, these labels are symmetry $\longrightarrow s \mapsto$ totally symmetric labels for spherical symmetry...

$$
x^{2}+y^{2}+z^{2}
$$

determining symmetry is really a question of lowering the symmetry
$p \mapsto$ transforms as linear basis vectors x, y, z
$d \mapsto$ transform as quadratic basis vectors

$$
x y, x z, y z, x^{2}-y^{2}, 2 z^{2}-x^{2}-y^{2}
$$

etc.

- e.g. in octahedral symmetry

$\boldsymbol{O}_{\boldsymbol{h}}$	E	$8 C_{3}$	$6 C_{2}$	$6 C_{4}$	$3 C_{2}$	i	$6 S_{4}$	$8 S_{6}$	$3 \mathrm{~s}_{h}$	$6 \mathrm{~s}_{d}$		
$A_{1 g}$	+1	+1	+1	+1	+1	+1	+1	+1	+1	+1	$x^{2}+y^{2}+z^{2}$	$\mapsto s$
$A_{2 g}$	+1	+1	-1	-1	+1	+1	-1	+1	+1	-1		
E_{g}	+2	-1	0	0	+2	+2	0	-1	+2	0	$\left(2 z^{2}-x^{2}-y^{2}, x^{2}-y^{2}\right)$	$\mapsto d_{x^{2}-y^{2}, z^{2}}$
$T_{1 g}$	+3	0	-1	+1	-1	+3	+1	0	-1	-1	$\left(R_{x}, R_{y}, R_{z}\right)$	$\mapsto d_{x y, z z, y z}$
$T_{2 g}$	+3	0	+1	-1	-1	+3	-1	0	-1	+1	$(x y, x z, y z)$	
$A_{1 u}$	+1	+1	+1	+1	+1	-1	-1	-1	-1	-1		
$A_{2 u}$	+1	+1	-1	-1	+1	-1	+1	-1	-1	+1		
E_{u}	+2	-1	0	0	+2	-2	0	+1	-2	0		
$T_{1 u}$	+3	0	-1	+1	-1	-3	-1	0	+1	+1	(x, y, z)	$\mapsto p_{x, y, z}$
$T_{2 u}$	+3	0	+1	-1	-1	-3	+1	0	+1	-1		

the symmetry of the transition operator will also transform as cartesian functions:

$$
\hat{M}=\underset{\text { linear }}{\hat{\mu}_{1}}+\underset{\text { rotation }}{\hat{m}_{1}}+\underset{\text { quadratic }}{\hat{\mu}_{2}}+\hat{m}_{2}+\ldots
$$

Assignment \#2

Submit a manuscript related to your field of study that uses group theory to assist in solving a specific issue...
e.g. explaining the electronic structure of C_{60}...

1. Symmetry, Group Theory, and Electronic Structure
1.1 Fundamentals
1.2 Symmetry and Group Theory
1.3 Vibrational Spectroscopy
2. Ground State Spectroscopic Methods
3. Excited State Spectroscopic Methods
4. Other Physical Methods
