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Some Important Definitions

• symmetry operation: movement of an object such that every 
point of the object is coincident with an equivalent point

• symmetry element: geometrical entity with respect to which a 
symmetry operation is performed
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Element Symmetry Operation Symbol

Plane of 
symmetry

Reflection of all points through the plane sv, sh, sd

Inversion 
center

Inversion of all points through 
the inversion center

i

Proper 
axis of rotation

Rotation of all points about the axis by 
an amount m x (2p/n) [for Cn

m]
C2, C3, C3

2, C4, ...

Improper 
axis of rotation

Coupled rotation about an axis/reflection 
perpendicular to that axis by m x (2p/n)

S2, S3, S3
2, S4, ...

(Identity) Do nothing E

N
HH

H
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Mathematical Groups

• collection of elements with mathematical four properties:
• IDENTITY  There is an element e of the group such that a • e = e • a = a 

for any element a of the group

• CLOSURE  If a and b are in the group then the result of a • b is also 
a member of the group

• INVERSE  For any element a of the group there is an a-1 such that 
a • a-1 = a-1 • a = e

• ASSOCIATIVITY  If a, b and c are in the group then (a • b) • c = a • (b • c)

• general definitions for any group of mathematical elements (a, b, c, etc.) 
under a particular operator (• above)

• commutativity is not necessary (special groups → Abelian)

• Symmetry Point Groups are mathematical groups where:

• the elements are symmetry operations

• the operator simply states that operations 
should be performed sequentially from right to left... (product of operations)
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2 2 2 2v v
C C C C do sv and then 

2 C2 rotations
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Do the symmetry operations for NH3  form a point group?

• what are the symmetry operations?
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N

H<B>

H<C>
H<A>

C3

C3
major axis  three-fold axis of symmetry (C3) leads to C3

1 & C3
2 operations

any other axes of rotation? no… but looking down main axis…

N

H<B>

H<C>

H<A>

C3

sv

sv
'

sv
"

three distinct vertical 
planes of symmetry (sv)

1 2

3 3

symmetry
, , , ,operations v v v

C C
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• Construct multiplication table

• Identity  Yes!

• Closure  Yes!

• Inverse  Yes!

• Associativity  Yes!
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Symmetry Point Groups

• Localized symmetry representations of geometric objects

• All molecules belong to a “point” group

• the “point”  invariant point where all symmetry elements converge

• Extended structures (crystals) described by Space Groups

• Space groups = point groups + translational symmetry (crystallography)

• Nomenclature  two systems in general use

• Schönflies Notation:  standard for molecular symmetry (point groups)

• International Notation: standard in crystallography (space groups)
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• Low Symmetry Point Groups

• contain no rotational symmetry elements

• symmetry defined for a specific geometry (frozen coordinates)
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1
1   onlyC E

F Br
Cl

H

FNO

,
s h
C m E 1 ,

i
C i E

C2H2F2Cl2
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• Rotational Point Groups

• contains only one rotational axis

• other elements possible...
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, , n

n n n
C n C C E

even odd 

/ ,(2 ) , , ,n

nh n n h

n n

C n m n C C E

2 5

3 3 3 3
, , , , ,

h
E C C S S

H

Cl H

Cltrans-1,2-dichloroethane

2 2
, , ,

h
E C i S
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H2O2

2
2C

B(OH)3

3
6

h
C

planar boric acid

C2H2Cl2

2
2 /

h
C m



The University of British Columbia
Department of Chemistry

C8H4F4

4
,E S

4
4S

• Rotational Point Groups (continued)

• Sn exists uniquely for even n ≥ 4, since 

• S1 ≡ Cs

• S2 ≡ Ci

• Sn ≡ Cnh for all odd n ≥ 3
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2, , n

n n n
S n S S E

even odd 

, , , , ( )n

nv n n v
n n

C nmm nm C C E n

2
2

v
C mm

HCl

v
C

, ,
v

E C

H2O

2
, , ,

v v
E C

NH3

2

3 3
, , , , ,

v v v
E C C

3
3

v
C m

1.2 Symmetry and Group Theory



The University of British Columbia
Department of Chemistry

Chem 529 (2009-W2) 11January 11, 2010

• Dihedral Point Groups  more than one axis of rotation

2
variable , , , ,n

nd n n v
D C C E nC n

2
even odd 

22 , 2 , , ,n

n n n
n n

D n n C C E nC
MN

N

N

N

N
N

3
32D

perpendicular to Cn

2
/ 2 / 2 / , , , , ,n

nh n n h v
D n m m m C C E nC n

H

H H

H
2 2 2

2h m m m
D 6 2 2

3h m m m
D

C C HH

hD

bisecting C2
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[C(NO2)3]-

C6H6

H

HH

H

H

H

3
3 2 /

d
D m

trans-1,2-dichloroethane

Cl

Cl

allene

2d
D
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• High Symmetry Point Groups

• multiple primary axes of rotation

5 6
, ,

h
I C C

2

3 3
4 ,4

d
T C C

3

4 2 4
3 ,3 ,3 ,

h
O C C C

H H
H

H

ML
L

L

L

L
L
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Classification of Molecules into Point Groups

1. Match symmetry elements of molecule with those of the character tables 
of a point group (more on this later).

2. Use a flow chart:
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Representations of Groups  Character Tables

• Illustrations can describe effects of symmetry operations , but 
more convenient to use a representational shorthand notation

• Representations  symbols that contain information associated with the 
entire set of symmetry operations of a point group

• Character Tables  summary of relationships (characters) btw reps & 
individual symmetry operations
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C3v E 2C3 3sv

A1 1 1 1 z z2

A2 1 1 -1 Rz

E 2 -1 0 (x,y), (Rx,Ry) (x2-y2, xy), (xz,yz) N

H<B>

H<C>
H<A>

C3

C3

Point Group Symmetry operations (grouped by classes of related ops)

irreducible representations 
IR

characters 
geometrical bases/transformations

sum of coefficients gives order of group
3

1 2 3

6

vCh   
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• General Organization of Character Tables

Mulliken Symbols used to indicate IR

= 1 then A or B
= 2 then E
= 3 then T

For 1 dimensional irreps:

= +1 then A (i.e. symmetric)
= -1 then B (i.e. antisymmetric)

= +1 then Sub1 (e.g. A1)
= -1 then Sub2

= +1 then Subg (i.e. gerade)
= -1 then Subu (i.e. ungerade)

if no î: = +1 then Super' (e.g. A2')
= -1 then Super“
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ˆ( )E

C3v E 2C3 3sv

A1 1 1 1

A2 1 1 -1

E 2 -1 0

1ˆ( )
n
C

1ˆ ˆ( ) ( )
n v
C or

ˆ( )i

ˆ( )
h

Symmetry elements are usually, 
but not always, organized by the 
following priority:

E > Cn > Cn' > i > S > sh > sv > sd
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• Building a Simple Character Table

• Determine the effect of all symmetry operations on a series of geometrical 
basis vectors and tensors

• e.g. H2O 
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2 2 2, , , , , , , , , , , .x y zx y z R R R xy xz yz x y z etc

2 2, , ,v v vC E C s s 
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R

R

R

R R
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C2v
E C2 sxz syz

1 +1 +1 +1 +1 z

2 +1 +1 -1 -1 Rz

3 +1 -1 +1 -1 x or Ry

4 +1 -1 -1 +1 y or Rx

double-check accuracy of character table by ensuring 
that products of two operations still work...  
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• label irreps using rules defined previously...

• totally symmetric representation is very special...

• always exists – defines the actual symmetry of the point group

• mathematically, only functions that are totally symmetric will have non-zero integrals 
when integrated over all space:
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C2v E C2 sxz syz

1 +1 +1 +1 +1 z

2 +1 +1 -1 -1 Rz

3 +1 -1 +1 -1 x or Ry

4 +1 -1 -1 +1 y or Rx

1

2

1

2

A

A

B

B









symmetric with respect to all symmetry operations
= totally symmetric representation

1
( ) 0 if  ( )

( ) 0 if  ( ) any other 
i

f d f A

f d f

in C2v symmetry
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Five Theorems for Complete Set of Irreps in a Point Group

• Sum of squares of the dimensions of  
i of a group = the order of the group (h)

• Sum of squares of the characters 
in i = the order of the group

• i are mutually orthogonal (i.e. 
they define a minimal basis set)

• For a given i , the characters of all operations belonging to the 
same class are identical

• ops can be turned into one another by changing reference frame

• Number of i equals the number of classes
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2ˆ( )
i

i

E h

2

ˆ

ˆ( )
i

R

R h

ˆ

ˆ ˆ( ) ( ) 0 for 
i j

R

R R i j
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C
3v

E 2C3 3sv

A1 1 1 1

A2 1 1 -1

E 2 -1 0
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• not all point groups can constructed in this way

• can be completed by using theorems + other mathematical approaches

• luckily, you generally don’t have to build character tables from scratch

• what about representations that don’t give +1 and/or -1 as characters?
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D4h E 2C4(z) C2 2C'2 2C''2 i 2S4 σh 2σv 2σd

linear,

rotations

quadratic

functions

cubic

functions

A1g +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 - x2+y2, z2 -

A2g +1 +1 +1 -1 -1 +1 +1 +1 -1 -1 Rz - -

B1g +1 -1 +1 +1 -1 +1 -1 +1 +1 -1 - x2-y2 -

B2g +1 -1 +1 -1 +1 +1 -1 +1 -1 +1 - xy -

Eg +2 0 -2 0 0 +2 0 -2 0 0 (Rx, Ry) (xz, yz) -

A1u +1 +1 +1 +1 +1 -1 -1 -1 -1 -1 - - -

A2u +1 +1 +1 -1 -1 -1 -1 -1 +1 +1 z - z3, z(x2+y2)

B1u +1 -1 +1 +1 -1 -1 +1 -1 -1 +1 - - xyz

B2u +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 - - z(x2-y2)

Eu +2 0 -2 0 0 -2 0 +2 0 0 (x, y) - (xz2, yz2) (xy2, x2y), (x3, y3)
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Degenerate Irreducible Representations

• So far, operations have all transformed into ± themselves

• characters represent simple transformations (1x1 matrices)

• in some point groups  transformation gives LC of vectors

• results in degenerate representations...

• e.g. let’s look at the effect of a C3 rotation in NH3 (C3v) on (x,y,z)
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N
H

HH

N
H

HH

C3

z

y
x

x'

y'

z

y

x

y’

x’

C3

looking from above, we see 
that the x,y axes transform 
into linear combinations of 

each other...

32 2 1
3 3 2 2

32 2 1
3 3 2 2

' cos sin

' sin cos

...(in matrix form)

1 3
' 2 2
' 3 1

2 2

x x y x y

y x y x y

or

x x

yy

in this case, the (x,y) pair 
must be considered as 
inseparable since they require 
each other to be properly 
defined within C3v.
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• how do we build the character table for C3v?

• remember – (x,y) must now be considered together...

• symmetry operations are E, 2C3, 3sv

• characters of 22 transformation 
matrices are the traces of those matrices

• within a class of operations
• matrices are not necessarily the same

• trace of the matrices must be identical
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ˆ 1

1 0
ˆ

0 1

E z z

x x
E
y y

3

31
2 2

3 3 1
2 2

ˆ 1

ˆ

C z z

x x
C
y y

ˆ 1

1 0
ˆ

0 1

v

v

z z

x x

y y

2
3

31
2 2

2
3 3 1

2 2

ˆ 1

ˆ

C z z

x x
C
y y

Tr
a b

a d
c d

2

1

0

C3v E 2C3 3sv

A1 1 1 1

A2 1 1 -1

E 2 -1 0

z

,x y
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Uses of Character Tables – Direct Products

• often important to know the symmetry of a function that results 
from the product of two or more other functions, i.e. 

• symmetry of product function  = direct product of components

• DP obtained by multiplying the characters of each component i

• e.g. in C3v symmetry with 
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1 2
f f f

1 1

1 2 1 2
2 2

if  , and  then 
DP

f
f f f f

f
direct product

1 1 2 2 and f A f A

E 2C3 3sv

A1 +1 +1 +1

A2 +1 +1 -1

A1 x A2 = (1)(1) (1)(1) (1)(-1)

= 1 1 -1 = A2

3
from  char table

v
C

a direct product involving the 
totally symmetric representation 
simply results in getting the same 

function back...

1

symm i i

i iA
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• e.g. in C3v symmetry with

• DP may result in a complex solution:

• product must be linear combination of irreps

• any function can be broken down into a linear comb. of basis functions

• reducible reps can therefore be reduced 
into its component irreps

• can use a multiplication table to find that

• we say that EE contains A1, A2, and E
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1 2
 and f E f E

E 2C3 3sv

E +2 -1 0

E +2 -1 0

E x E = (2)(2) (-1)(-1) (0)(0)

= 4 1 0 =  ?????

3
from  char table

v
C

dimension of EE is 4...  but the 

greatest dimensionality i in C3v

is E (with 2) 
 product is reducible

1 2red

C3v A1 A2 E

A1 A1 A2 E

A2 A2 A1 E

E E E A1 + A2 + E

1 2E E A A E
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Uses of Character Tables – Reducible & Irreducible Reps

• character table contains complete set of irreps for a group

• everything in the group can be reduced into LC of these irreps

• properties of a set of N operations represented by NN matrix

• usually a reducible representation

• always possible to rearrange them to produce LC of irreps

• NN matrix representing symmetry operations reduces to smaller 11, 
22, and 33 matrices, which are the irreps  i.e. block diagonalization
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1

1

1

2

2

block diagonalization



The University of British Columbia
Department of Chemistry

• reduction formula to generate component irreps

• All reducible reps can be reduced
to a linear combination of irreps:

• coefficients for component irreps is 
calculated using reduction formula:

• red(R) = character of the reducible representation, red, for operation R

• i(R) = character of the irreducible representation, i, for operation R

• ai = number of times a particular irrep, i, occurs in the reducible rep

• e.g. EE in C3v
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ˆ ˆ( ) a ( )

1 ˆ ˆa ( ) ( )

red i i
i

i R red i
R

R R

n R R
h

C3v E 2C3 3sv

A1 1 1 1 z

A2 1 1 -1 Rz

E 2 -1 0 (x,y), (Rx,Ry)

E  E (2)(2) (-1)(-1) (0)(0)

DP 4 1 0
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C3v E 2C3 3sv

A1 1 1 1 z

A2 1 1 -1 Rz

E 2 -1 0 (x,y), (Rx,Ry)

E  E (2)(2) (-1)(-1) (0)(0)

DP 4 1 0

1 1

1 1 13

4 1 1 1 31 2 0 1

ˆ ˆ ˆ3 3

1 ˆ ˆa ( ) ( )

1 ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
6

1
1 4 1 2 1 1 3 0 1 1

6

v

A R red A
R

red A red A red v A vE C

n R R
h

n E E n C C n
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3

4 2 1 1 31 2 0 0

ˆ ˆ ˆ3 3

1 ˆ ˆ ˆ ˆ ˆ ˆa ( ) ( ) ( ) ( ) ( ) ( )
6

1
1 4 2 2 1 1 3 0 0 1

6

vE red E red E red v E vE C
n E E n C C n
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2 2 2 23

4 1 1 1 31 2 0 1

ˆ ˆ ˆ3 3

1 ˆ ˆ ˆ ˆ ˆ ˆa ( ) ( ) ( ) ( ) ( ) ( )
6

1
1 4 1 2 1 1 3 0 1 1

6

vA red A red A red v A vE C
n E E n C C n

1 2

1 2

1 1 1
E E

A A E

A A E
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Using Reducible Representations  Molecular Vibrations

• symmetry of molecular motions determined by generating 
appropriate reducible representations!

• use local cartesian coordinates for all N atoms in the molecule

• these describe all 3N nuclear motions that are possible

• break down into: translations, vibrations, and rotations

• e.g. determine symmetry of all 
vibrational modes for H2O:
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C2v E C2 sxz syz

A1 +1 +1 +1 +1

A2 +1 +1 -1 -1

B1 +1 -1 +1 -1

B2 +1 -1 -1 +1

there are three sets of cartesian
coordinates – i.e. 9 basis vectors

perform all operations on every basis 
vector: three possible outcomes:

+1  no change
-1  reversed

0  change in position
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• determine the symmetry of all vibrational modes for H2O
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C2v
E C2 sxz syz

A1 +1 +1 +1 +1

A2 +1 +1 -1 -1

B1 +1 -1 +1 -1

B2 +1 -1 -1 +1

E C2 sv(xz) sv(yz)

x1
+1 -1 +1 -1

y1
+1 -1 -1 +1

z1
+1 +1 +1 +1

x2
+1 0 +1 0

y2
+1 0 -1 0

z2
+1 0 +1 0

x3
+1 0 +1 0

y3
+1 0 -1 0

z3
+1 0 +1 0

red 9 -1 3 1
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• this 3N representation can be reduced into its component 
irreducible representations:

• represents symmetry of all nuclear motions:

• only want vibrational degrees of freedom

• must remove translations & rotations

• character table gives answer

• translations along x, y, z transform as x, y, z

• rotations around x, y, z transform as Rx, Ry, Rz

• remove these and the remainder must be the vibrations!
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2

1 2 1 2

( )

3 1 2 1 2 1 2 1 2
a a a a 3 1 3 2vC

N A A B B
A A B B A A B B

3N trans vib rot

C2v E C2 sxz syz

A1 +1 +1 +1 +1 z

A2 +1 +1 -1 -1 Rz

B1 +1 -1 +1 -1 x, Ry

B2 +1 -1 -1 +1 y, Rx

3

1 2 1 2 1 1 2 2 1 2

1 1

3 3 2

2 1

vib N trans rot

A A B B A B B A B B

A B
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Visualizing Molecular Vibrations: Using Internal Coordinates

• just determined that H2O has

• three fundamental vibrational modes (a.k.a. normal modes)

• with the following symmetry: A1, A1, and B1

• but...  what do these look like?

• this can be done by group theory...

• much easier if we modify our basis vectors → use internal coordinates

• int coord are chemically more relevant (correspond to largest forces)

• distances (r)  bond distances

• angles (θ)  bond angles

• dihedral angles (φ)  bond torsion angles

• intrinsically exclude translations & rotations
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• use OH bond distances in H2O as a basis vectors...  

• the opposite of a stretch is a compression such that

• what happens to these two vectors 
when we operate on them…

• reducible representation is for both OH stretches!

• used Dr1 and Dr2  A1 & B1 stretches therefore involve BOTH Dr1 and Dr2

• must build SALCs of the component vectors

• SALC = symmetry-adapted linear combination
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= -

E C2 sxz syz

red 2 0 2 0
OH 1 1

A B
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Constructing Symmetry Adapted Linear Combinations

• transform set of localized functions that do NOT transform 
within a point group into an analogous set of delocalized 
functions that do!

• used in many areas of chemistry  MO theory, vibrational analysis, etc.

• anywhere where symmetry is useful – SALCs must be invoked

• projection of localized functions onto correct symmetry irreps

• important things to remember:

• each operation must be done independently (can’t do just one per class!)

• procedure yields unnormalized SALCs (must be normalized)
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• e.g. H2O (again!)

• construct the functions (Si) from the internal coordinates (Dr)

• look at Dr1 first... and how it transforms in A1

• this must be normalized 

• for B1 symmetry:
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• The stretching vibrational modes are therefore 

• A1  symmetric linear combination of Δr1 and Δr2

• B1  antisymmetric linear combination of Δr1 and Δr2

• vibrational spectroscopy  SALCs are referred to as symmetry coordinates
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• we still have one vibrational mode left...  (the other A1 mode)

• we have one internal coordinate left...  the H-O-H bending mode

• performing symmetry operations on this coordinate gives...

• 1st order approximation of the normal modes for H2O are...
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these two modes have the same symmetry and 
therefore can mix to form linear combinations...

normal coordinate analysis allows for such mixing 
and uses experimental data to determine extent of 
mixing in TRUE normal modes.
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• e.g. vibrational modes of [NO3]-

• find the point group of the molecule 

• operate using Cartesian axes of each atom

• reduce the representation…

• remove translations & rotations
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3hD

D3h E 2C3 3C2 sh 2S3 3sv

A1' 1 1 1 1 1 1 z2

A2' 1 1 -1 1 1 -1 Rz

E' 2 -1 0 2 -1 0 (x,y) (x2-y2,xy)

A1" 1 1 1 -1 -1 -1

A2" 1 1 -1 -1 -1 1 z

E" 2 -1 0 -2 1 0 (Rx,Ry) (xz,yz)

D3h E 2C3 3C2 sh 2S3 3sv

3N 12 0 -2 4 -2 2

3 1 2 2
3 2

N
A A E A E

3 3 , , , ,

1 2 2 2 2 2

1 2

3 2

2

x y zvib N trans rot N x y z R R R

A A E A E E A A E

A E A
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• determine contributions from stretching vibrations

• use bond distances are basis vectors

• generate a reducible representation

• find the projections of the basis vector to generate appropriate SALCs 
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• applying SA1 on Dr2,3 in D3h
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• for E’ symmetry, there must be two vibrations that transform together

• we have found one of them:

• finding the second vibrational mode – use rules of mathematical groups

• applying any operation of the group on the above function must lead to:
• ± itself

• ± another degenerate function (in this case, its only partner)

• a linear combination of these degenerate functions

• apply C3 to existing E’ vibrational mode

• same thing as doing the projection of Dr2 onto E’

• is this new function orthogonal to the first?

• f is not a complementary basis function but 

• modify f by adding in some amount of first basis vector 
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• is this new function (f’) orthogonal?

• we have now generated a partner that is
orthogonal to the initial basis function

• what do these look like?
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• let’s consider what we have just determined…

• formed pair of vibrational modes whom together transform as E’ in D3h

• but these basis functions are not unique!

• other linear combinations of these basis functions will 
also meet the criteria that we have set out:

• together they “span the space” of E’

• they are orthogonal to each other

• e.g. what if we do a combination of our existing functions?

• chosen description is only one of the possible representations of E’

(1) 1
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2 32

2E
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• thus far, we have evaluated only two of the components…

• now look at bond bending (angular degrees of freedom)

• project out the A1’ solution
• this solution doesn’t make any sense – throw it out

• what about the E’ solution?

1 2vib A E E A

from bond stretches

D3h E 2C3 3C2 sh 2S3 3sv
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S r r r r r

1
1 2 36

(1) 2
E
S

1
2 32

& (1)
E
S

1.2 Symmetry and Group Theory



The University of British Columbia
Department of Chemistry

Chem 529 (2009-W2) 45January 11, 2010

• we are now down to one vibrational mode that is unassigned (and one 
failure)

• let us consider the molecule again, however…

• q is defined in the plane – only need two coordinates 
describe this plane since

• the additional coordinate that describes the geometry of this
molecule is NOT a simple bond angle…  it must be related
to a dihedral angle  out of plane distortion!

• the rejected mode can exist if we allow for distortion out of the plane

• by inspection, this out-of-plane distortion has A2” symmetry!

1 2vib A E E A
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1 2 3 2
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• the symmetry coordinates for NO3
- are therefore:
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Symmetry in MO theory  Making SALCS from AOs

• same approach used to create delocalized fragment molecular 
orbitals (FMOs) from localized atomic orbitals (or MOs)…

• use symmetry to build orbitals that transform properly in the point group

• e.g., the orbitals of the cyclopropenyl cation 

• point group  D3h (same as NO3
-)

• use the 2pz orbitals and see how they transform

H
H H

D3h E 2C3 3C2 sh 2S3 3sv

red 3 0 -1 -3 0 1

D3h E 2C3 3C2 sh 2S3 3sv

A1' 1 1 1 1 1 1

A2' 1 1 -1 1 1 -1

E' 2 -1 0 2 -1 0

A1" 1 1 1 -1 -1 -1

A2" 1 1 -1 -1 -1 1

E" 2 -1 0 -2 1 0

1.2 Symmetry and Group Theory
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• reduce the representation 

• Use the projection method to 
determine appropriate SALCs

2red A E
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• SALCs generated from the 2pz orbitals in the cyclopropenyl
radical are therefore
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Determining Symmetry of Transition Integrals

• use symmetry to evaluate transition integrals for spectroscopy

• Need to know symmetry of 

• atomic/molecular wavefunctions

• Transition moment operator (      )

• use direct products to get symmetry of integral 

• If AOs centred at point of point group  easy to get symmetry

M̂

2
ˆ

g ef M

ˆg ef M

2 2 2

2 2 2 2 2

totally symmetric

transforms as linear basis vectors
, ,

transform as quadratic basis vectors
, , , ,2  

.

s
x y z

p
x y z

d
xy xz yz x y z x y

etc

remember, these labels are symmetry 
labels for spherical symmetry…

determining symmetry is really a question 
of lowering the symmetry
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• e.g. in octahedral symmetry

Oh E 8C3 6C2 6C4 3C2 i 6S4 8S6 3sh 6sd

A1g +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 x2+y2+z2

A2g +1 +1 -1 -1 +1 +1 -1 +1 +1 -1

Eg +2 -1 0 0 +2 +2 0 -1 +2 0 (2z2-x2-y2, x2-y2)

T1g +3 0 -1 +1 -1 +3 +1 0 -1 -1 (Rx, Ry, Rz)

T2g +3 0 +1 -1 -1 +3 -1 0 -1 +1 (xy, xz, yz)

A1u +1 +1 +1 +1 +1 -1 -1 -1 -1 -1

A2u +1 +1 -1 -1 +1 -1 +1 -1 -1 +1

Eu +2 -1 0 0 +2 -2 0 +1 -2 0

T1u +3 0 -1 +1 -1 -3 -1 0 +1 +1 (x, y, z)

T2u +3 0 +1 -1 -1 -3 +1 0 +1 -1

s

2 2 2,x y z
d

, ,xy xz yzd

, ,x y zp

the symmetry of the transition operator will also transform as cartesian functions: 

1 1 2 2
ˆ ˆ ˆˆ ˆ

rotationlinear quadratic

M m m
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Assignment #2

Submit a manuscript related to your field of study that 
uses group theory to assist in solving a specific issue...

e.g. explaining the electronic structure of C60...
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C60-GroupTheory.pdf
C60-GroupTheory.pdf
C60-GroupTheory.pdf
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