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139 
countries 

announced 
carbon 

neutrality 
goals

by Nov. 24, 2022
https://zerotracker.net/



Life cycle thinking and carbon footprint 

Japan

South KoreaUK

North America

CanadaUSA

France

¡ Carbon footprint labels become

“standard” for many products

¡ Life Cycle Assessment is a standard

method to assess environmental

impacts associated with a product

during its entire life cycle.

¡ Carbon footprint considers both direct

and indirect GHG emissions in the

product‘s life cycle

Data Data

Data Data

Highly data-

intensive ！

！！



Two types of data in LCA

¡ Life cycle impact assessment (LCIA)

is a step for evaluating the potential

environmental impacts by converting

the LCI results into specific impact

indicators.

¡ Life cycle inventory (LCI) is the

methodology step that involves creating

an inventory of input and output flows for

a product system.

LIFE CYCLE INVENTORY，LCI LIFE CYCLE IMPACT ASSESSMENT，LCIA

AND

CH4

CO2

……

𝐸𝐼 =$𝐿𝐶𝐼×𝐶𝐹

Global warming 
potential (GWP)

GWP = 𝐶𝑂!×1 + CH"×
28+⋯

Plastic film 
(kg)

Polyethylene 1.02 kg
Electricity 0.66 kWh
Wastewater 27 L

CO2 1.42 kg

Methane 0.08 kg

… …

¡ Unit Process Data ¡ Characterization factor



Data gap in LCA studies

https://www.researchgate.net/publication/256378751_JRC_Reference_Reports_The_International_Reference_L
ife_Cycle_Data_System_ILCD_Handbook/figures?lo=1

¡ Can we build a data-driven

computational framework

for estimating missing LCA

data based on the existing

data?

Current data collection methods: ¡ Data Availability

¡ Data Quality



Artificial intelligence provides additional insights

https://www.edureka.co/blog/ai-vs-machine-learning-vs-deep-learning/

Hidden
pattern
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Life Cycle Inventory (LCI) 

• Unit process dataset 
(ecoinvent database)

Plastic film (kg)

0.66 Electricity
(kwh)

1.42 CO2 (kg)

Wastes and emissions

Input products 
from other unit 
processes

NA

NA Missing
Water (L)



Research question and goal

Research goal: advance LCA data compilation by developing a computational 
framework for estimating missing LCA data based on the existing data. 

Two approaches:

1. Similarity-
based link
prediction

2. Decision-tree 
based 
supervised 
learning

Missing

Partially complete unit process database



Similarity-based link prediction method

LCI Database

1

1

2 43

2 3 4 5 6

A network

Estimating missing data in LCI database = predict missing links in a network

?
?

Bob Ann

Mike

John

Jack

Jean

?

Similar to friends 
recommendation in social media

• Hou, P., Cai, J., Qu, S., & Xu, M. (2018). Estimating missing unit process data in life cycle assessment 
using a similarity-based approach. Environmental science & technology, 52(9), 5259-5267.

Missing

the 
knowing 
part 



Algorithm and procedure

Target 
Process Process 1 Process 2 Process 3 …

Input 1 1.0 2.0 4.1 9.8 …

Input 2 2.0 3.0 7.1 7.4 …

Input  3 1.0 5.9 9.1 …

Input 4 1.0 0.2 5.4 4.9 …

Output 1 0.5 0.4 1.8 6.1 …

Output 2 0.6 6.6 3.7 …

Output  3 2.0 2.0 7.4 0.2 …

Output 4 3.0 1.0 1.4 0.2 …

… … … … … …

Note: Ranked in descending order of similarity 

1. Calculate similarity:

2. Estimate missing data:

The weighted mean of k most 
similar processes.

k=3

k=6 The best parameters are selected 
using the leave-one-out-cross-
validation (LOOCV) on training set

Minkowski distance：

Similarity：

E1 =   (2.0*s1+4.1*s2+9.8*s3)/(s1+s2+s3)

E1



Results - MPEs with different data missing

• When fewer data are missing (1% and 5%), the 
estimation MPEs are distributed in relatively 
narrow ranges with very high accuracy; 

• When more data are missing (10%), the 
distribution of MPEs becomes much broader and 
model performance can vary greatly between 
different unit processes;

• When missing data exceeds a certain level 
(20%), the known information is not enough to 
find the true similar processes and thus the 
method is hard to estimate those missing 
data.

• Need to find another flexible method to solve 
the situation when more data are missing



Hypothesis for the second model

11,332 columns (unit processes) 

13,201 rows
(inter. and 

elem. flows)

• Flows and are somewhat 
correlated with each other



Supervised learning approach

Table.Model performance on 10 test processes with 10% of data missing

Unit process
database

Model Training Model application

New unit
process

Missing 
part as 
responses

the knowing 
part as 
predictors



Table. R2 and MPEs with different percentages of data missing

Results - MPEs with different data missing



Summary

o This method can be used to upgrade the data quality for existing 
database.

1

This study demonstrates the promising potential of using 
computational approaches for LCI data compilation. 

o This method does not intend to replace primary data collection, but is 
a complementary approach when primary data are not available.

2
3 o This method can be used to estimate the incomplete data for a new 

database based on part of its known data.
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Variation due to random train-test data splits



Data sparsity and imbalance

¡ The Ecoinvent UPR database

is a sparse matrix, in which

only 0.24% of entries are

nonzero.

¡ The top 20% of flows with the

highest appearance accounted

for 80% of the total non-zero

flows.



Data magnitudes

¡ The UPR database represents

the underlying technology

network which has clear

physical and chemical

meanings.

¡ Process: Transport freight train

（ton. km)

¡ Flow: CO2 (kg)



Variation due to imbalance of data

¡ The number of appearances had a

positive impact on the model’s

performance

¡ “U” shape in the scatter plot between

the magnitude of this flow and its MPE



Model generalizability on different databases

¡ U.S. Life Cycle Inventory

(USLCI) Database

¡ 4074 flows and 638 processes

¡ 7 times smaller than Ecoinvent

¡ Without information for other

countries and regions



Summary

o Acknowledge the potential variation due to the randomness of the data.

1

High variabilities in the existing machine learning methods for
LCA studies due to the data and model selections.

o Data integration and data fusion from multiple sources are important
for more accurate and less biased estimations.

2
3 o The trade-off between the “physical meaning” of the data and applying 

needed mathematical operations.
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Characterization Factor in LCIA

US EPA
Toxic Substances Control Act (TSCA)  

(85,000 chemicals)

USEtox v2.0 provides ecotoxicity and 
human toxicity characterization factors (CF)

Life cycle impact assessment (LCIA) –
quantifying the impacts of chemicals and 
other contaminants. 

USEtox (3,077 chemicals)

known ecotoxicity CF in 
USEtox (2,499 chemicals)



Why missing characterization factors 

¡ Could last for
several months

¡ Could cost for
$8,000 to $20,000
for a single test

ECOSAR model test R2: 0.194

HC50



Research question and goal

• Can we make use of the existing data to get a
better estimation of HC50 (one kind of ecotoxicity)
and avoid the time and cost of laboratory tests? 

= f (    )
HC50 [kg∙m−3] is defined as the hazardous concentration of a chemical at which 50% of the 
freshwater species are exposed above their EC50. The EC50 is the effective concentration at 
which 50% of a population displays an effect (e.g. mortality) in a laboratory test or a field test.



Steps of Building the Neural Network Model

USEtox HC50s & 
14 chemicals 

properties
(2499 chemicals)

Training 
& 

validation 
sets

(70%)

Test 
set

(30%) 4. test the selected 
best network on 

test data

3. train the 
selected best 
network

test R2

Neural network model
vs. ECOSAR model

Predicted missing 
HC50s & CFs in 

USEtox
(578 chemicals)

5. Predict 

2. choose the best 
network with the highest 
cross-validated R2

best number of 
hidden neurons

…

cross-validated R2

1. train and validate 
networks with 
different number of 
hidden neurons (1-20)

cross-validated R2

…

one hidden neuron

two hidden neurons



Results – ANN for predicting ecotoxicity

Input layer:
physicochemical 
properties in USEtox

𝑌 = 𝑓 $ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ∗ 𝑖𝑛𝑝𝑢𝑡 + 𝑏𝑖𝑎𝑠

• Hou, P., Jolliet, O., Zhu, J., & Xu, M. (2020). Estimate ecotoxicity characterization factors for chemicals in life 
cycle assessment using machine learning models. Environment international, 135, 105393.

Physical
properties:
melting point
boiling point 
water solubility
…
Chemical 
properties:  
molecular weight 
degradation rate
… 

Neural network model avg. test R2: 0.549



Improve the model with domain knowledge 

• Classify chemicals into different mode of action 
(MoA) by Verharr scheme 

Class 1: Inert

Class 2: Less inert

Class 3: Reactive

Class 4: Specifically acting 

Class 5: Not classifiable 

Pesticides, 
herbicides

Aliphatic alcohols, e.g., 
methanol

Toxicity 
increasing 

Peroxide 
formers 

Phenols, 
anilines 



Results – model performance by different MOA

Avg. test R2: 0.549

All data (2,308 samples)

Avg. test R2: 0.758

Class 1 (485)

Avg. test R2: 0.658

Class 2 (90)

Class 3 (304)

Avg. test R2: 0.627

Class 4 (195)

Avg. test R2: 0.282

Class 5 (1,234)

Avg. test R2: 0.451

Specifically acting Not classifiable 



Hyperparameters in the neural network 

Hyperparameters Possible options
Number of hidden layers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, …

Neurons per hidden layer 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, …

Activation function relu, elu, tanh, sigmoid, hard_sigmoid, softplus, linear 
Network optimizer rmsprop, adam, sgd, adagrad, adadelta, adamax, nadam

• How can we find the best neural network model among all parameter 
combinations? 

o Grid search: try all combinations 

o Genetic algorithm: a directed random search technique that simulates 
the natural selection and evolution process. 



Using genetic algorithm for optimization

Training 
set

Genome

Neural 
network

Defines

…

Validatio
n set

validated 
R2=0.5

Validatio
n set

validated
R2=0.1

Validatio
n set

validate
d 

R2=0.4…

…

Evaluation of fitness Selection

Neural network 
and genome

Selected genomes Next generation

…

Crossover & mutation

Replace genomes of previous generation

Validation 
set

average 
test R2 Selected best genomes

Test set

cross-validated R2

• Hou, P., Zhao, B., Jolliet, O., Zhu, J., Wang, P., & Xu, M. (2020). Rapid prediction of chemical ecotoxicity through 
genetic algorithm optimized neural network models. ACS Sustainable Chemistry & Engineering, 8(32), 12168-12176.
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• Genetic algorithm can find 
comparable performance networks 
with the brute force method. 
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cost:
1.2%!



Summary

o Use validated model to predict missing Cfeco in USETox

1

This study provides a machine learning model to estimate 
HC50 in USEtox to calculate characterization factors for 
chemicals based on their physical-chemical properties

o Our model outperforms a traditional quantitative structure-activity 
relationship (QSAR) model (ECOSAR)

2
3 o Applied to a much border range of chemicals. 



Other exploration



• Note for future study:
• Cannot simply apply the established data 

science models without any adjustment
• Need to carefully consider the: 

• Objective
• Characteristics
• Particularity 

• Choose properly:
• Method
• Model structure
• Input features
• Response

Domain 
knowledge

Concluding remarks
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