APBI 200-LAB \# 2 ANSWER KEY

Section 1 - soil texture

Please answer the following questions:

1. Which of the following is including when determining the soil texture class?
a) $\%$ sand
b) $\%$ organic matter
c) $\%$ gravel
d) $\%$ silt
e) $\%$ water
f) $\%$ clay
2. Using the Canadian Soil Texture Triangle (Figure 2 in your lab manual) and information in the table below:
a) Fill in all missing information in the table below.

Soil	\% Sand	\% Silt	\% Clay	Textural class
A	33		33	
B		17	18	
C	10	48		
D		40	20	

b) Plot each of the 4 soils on the soil texture triangle given below, using information about their relative percentages of sand, silt, and clay.

c) Why do we consider a loam soil ideal?
3. Specific surface area of soil mineral particles is an important property to understand. Remember the diameters of mineral soil particles, as mentioned in the lectures, are:

Coarse fragments	Fine earth fraction		
	Sand	Silt	Clay
$>2 \mathrm{~mm}$	$0.05-2 \mathrm{~mm}$	$0.002-0.05 \mathrm{~mm}$	$<0.002 \mathrm{~mm}$

Assume that the density of quartz is $2650 \mathrm{~kg} \mathrm{~m}^{-3}$.
Showing all calculations determine:

a) What is the surface area - SA (in m^{2}) of a cube of quartz 0.1 mm tall?
b) What is its volume (in m^{3})? What is the weight of this cube (in kg)?
c) Calculate the specific surface area - $\mathrm{SSA}\left(\mathrm{m}^{2} \mathrm{~kg}^{-1}\right)$ for cubes of quartz 1 mm tall.
d) Calculate the specific surface area - SSA $\left(\mathrm{m}^{2} \mathrm{~kg}^{-1}\right)$ for cubes of quartz $1 \mu \mathrm{~m}\left(1\right.$ micrometer $\left.=10^{-6} \mathrm{~m}\right)$ tall.
e) Compare the two specific surface areas. What does this simple calculation tell you about the specific surface area of sand as compared to clay? Why is this important?
[5 points]
4. You get a summer job working in the field for a forestry company. One of your tasks is to determine soil texture. Your supervisor tells you to do hand-texturing. What are the advantages and challenges with this method? Briefly explain.

Required attachments:

- Your hydrometer data sheet with sample calculations written out for at least one line.
- The particle-size distribution curve. Please do not forget to include a title and axes labels.
- Your answers regarding the soil texture of two "mystery" samples (determined by hand-texturing). Include a brief justification of your answer.

Section 2 - Soil bulk density

Please answer the following questions:

5. The bulk density of a soil is the:
a) mass of solids / volume of solids
b) mass of solids / total soil volume
c) volume of voids / total soil volume
d) 1 - volume of voids / total soil volume
6. Which would be more likely to change as a result of soil compaction:
a) bulk density, or
b) particle density?

Briefly explain your answer.
7. A mineral soil has a bulk density of $1.54 \mathrm{~g} / \mathrm{cm}^{3}$. Showing all calculations answer the following:
a) What would you assume particle density to be equal to in this soil?
b) Calculate the porosity (f) in \%.
c) What would be the volume of pores (Vf) in $1 \mathrm{~m}^{3}$ of this undisturbed soil? Give the formula you use to determine the pore volume (Vf) and show your calculation.
8. Consider the following soil characteristics:

volume	$154 \mathrm{~cm}^{3}$
organic matter content	7%
mineral content (dry)	180 g
mineral particle density	$2.65 \mathrm{~g} / \mathrm{cm}^{3}$
Organic particle density	$1.30 \mathrm{~g} / \mathrm{cm}^{3}$

What is the bulk density of this soil in $\mathrm{g} / \mathrm{cm}^{3}$?
9. Consider the following mineral soil as shown on a diagram:
a) What is the porosity (in \%) of this soil?
b) Assuming a particle density of $2.65 \mathrm{~g} \mathrm{~cm}^{-3}$, what is the bulk density of this soil in $\mathrm{g} \mathrm{cm}^{-3}$?
Give the equation you use, show your full calculation and units.

[2 points]

Required attachments:

- The bulk density calculation table with all calculations written out. Include all the units.

Depth of sampling	Core height $(\mathbf{c m})$	Core diameter $(\mathbf{c m})$	Volume of core $\left(\mathbf{c m}^{3}\right)$	Oven-dried wt. of soil (\mathbf{g})	Bulk density (g/cm ${ }^{\mathbf{3})}$
$0-7.5 \mathrm{~cm}$	$\mathrm{~h}=7.5 \mathrm{~cm}$	$\mathrm{~d}=7.3 \mathrm{~cm}$		$\mathrm{Ms}=456.7 \mathrm{~g}$	

[2 points]

