1. By finding the curl, determine which of the following forces are conservative:
(a) $\boldsymbol{F}=x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}$
(b) $\boldsymbol{F}=y \boldsymbol{i}-x \boldsymbol{j}+z^{2} \boldsymbol{k}$
(c) $\boldsymbol{F}=y \boldsymbol{i}+x \boldsymbol{j}+z^{3} \boldsymbol{k}$
(d) $\boldsymbol{F}=-k r^{-n} \boldsymbol{e}_{r}$ in spherical coordinates
2. Particles of mud are thrown from the rim of a rolling bicycle wheel. If the forward speed of the bicycle is v_{0}, and the radius of the wheel is b, show that the greatest height above the ground that the mud can go is

$$
b+\frac{v_{0}^{2}}{2 g}+\frac{g b^{2}}{2 v_{0}^{2}} .
$$

At what point on the rolling wheel does this mud leave? (Note: it is necessary to assume that $v_{0}^{2} \geq b g$.)
3. A cannon that is capable of firing a shell at speed v_{0} is mounted on a vertical tower of height h that overlooks a level plain below. Ignoring air resistance, show that the elevation angle α at which the cannon must be set to achieve maximum range is given by the expression

$$
\csc ^{2} \alpha=2\left(1+\frac{g h}{v_{0}^{2}}\right) .
$$

