
1 Solutions to assignment 6, due June 23rd

Problem 6.5 We �rst verify the base case. When n = 1, the left-hand side is equal to 1, while the
right-hand side is equal to 2(1)2 − 1 = 1, and so they are equal.

So suppose that we have the equality
n∑

i=1

(4i− 3) = 2n2 − n

and we want to show that it is true when n is replaced by n + 1. We compute the
left-hand side in that case.

n+1∑
i=1

(4i− 3) =
n∑

i=1

(4i− 3) +
(
4(n + 1)− 3

)
=

n∑
i=1

(4i− 3) + 4n + 1

= (2n2 − n) + (4n + 1) by the induction hypothesis

= 2n2 + 3n + 1.

If we then compute the right-hand side, we �nd

2(n + 1)2 − (n + 1) = 2n2 + 4n + 2− n− 1 = 2n2 + 3n + 1.

As this is equal to the result above, it follows that
∑n+1

i=1 (4i− 3) = 2(n + 1)2 − (n + 1),
and so by induction, the statement is true for all positive integers n.

Problem 6.6 We �rst need to come up with a conjectured formula. The simplest way to come up
with one is to note that

n∑
i=1

(3i− 2) = 3
n∑

i=1

i− 2
n∑

i=1

1 = 3
n(n + 1)

2
− 2n =

3

2
n2 − n

2
.

It should perhaps be noted that since we already know what
∑

i is, that this actually
constitutes a proof of this equality! That being said, this is meant to be proven by
induction, so by induction we will go.

We work similarly to the previous problem. The base case is easy to see, and so we
assume that it holds for some �xed integer n. That is,

n∑
i=1

(3i− 2) =
3n2 − n

2

So we will compute the left- and right-hand sides for n = 1. The left-hand side is

n+1∑
i=1

(3i− 2) =
n∑

i=1

(3i− 2) + (3n + 1)

=
3n2 − n

2
+ (3n + 1) by induction

=
3n2 + 5n + 2

2
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while the right-hand side is

3(n + 1)2 − (n + 1)

2
=

3n2 + 6n + 3− n− 1

2
=

3n2 + 5n + 2

2

as desired. Thus by the principle of mathematical induction, the proof is complete.

Problem 6.7 Another formula which could be suggested is to study

n∑
i=1

(6i− 5)

which we conjecture (completely blindly, of course) would be equal to 3n2 − 2n. The
base case is easily veri�ed.

So assume that this is true for some integer n. Then computing the sum
∑n+1

i=1 (6i− 5)
we obtain

n+1∑
i=1

(6i− 5) =
n∑

i=1

(6i− 5) + (6n + 1)

= (3n2 − 2n) + (6n + 1) by the induction hypothesis

= 3n2 + 4n + 1.

The other expression, when evaluated at n + 1, is

3(n + 1)2 − 2(n + 1) = 3n2 + 6n + 3− 2n− 2 = 3n2 + 4n + 1

as claimed, and thus the result is true for all integers n.

Problem 6.10 As usual, the base case is clearly true. So we proceed onwards, and assume that

n−1∑
i=1

ari = a
1− rn

1− r

Like most problems involving only one more sum, we can work out the left-hand sum
for n + 1 as

n∑
i=1

ari =
n−1∑
i=1

ari + arn

= a
1− rn

1− r
+ arn

= a
(1− rn

1− r
+ rn 1− r

1− r

)
= a

(1− rn + rn(1− r)

1− r

)
= a

1− rn+1

1− r

as claimed, and so the result is true for all integers n by induction.

2



Problem 6.14 Our base case is n = 4. We compute

4! = 24 24 = 16

and so the base case is true. So let us assume the result for some integer n. Then

(n + 1)! = n!(n + 1)

> 2n(n + 1)

> 2n · 2 since n + 1 > 2

= 2n+1

which proves the result.

Problem 6.17 Once again, the base case is clear, as the two sides are equal when n = 1. So we assume
that (1 + x)n ≥ 1 + nx, and we look at

(1 + x)n+1 = (1 + x)n(1 + x) ≥ (1 + nx)(1 + x) by induction

= 1 + (n + 1)x + nx2

≥ 1 + (n + 1)x since x2 ≥ 0

and so Bernoulli's inequality is true for every integer n.

Side note: Can you see where the assumption x ≥ −1 is used? It is subtle, but it is
there!

Problem 6.18 The base case is clear, since for n = 0, we have 5n − 1 = 0. We move boldly forward
by induction. Unfortunately, we cannot say that all of the exercises are solved by
induction at this point though!

So assume for some �xed n that 4 | (5n − 1). Consider 5n+1 − 1. We can write this as

5n+1 − 1 = 5 · 5n − 1 = (4 + 1)5n − 1 = 4 · 5n + (5n − 1).

As both terms are divisible by 4 (the former, because, well... and the latter, by the
induction hypothesis), it follows that 5n+1 − 1 must also be divisible by 4 as claimed.

Problem 6.20 Base case, yadda yadda.

So assume that it is true for some integer n i.e. we can write

7k = 32n − 2n

for some integer k. We look at the next case and �nd

32n+2 − 2n+1 = 9 · 32n − 2 · 2n

= 9 · 32n − 9 · 2n + 7 · 2n by clever trickery

= 9(32n − 2n) + 7 · 2n by induction

= 9 · 7k + 7 · 2n = 7(9k + 2n)

and so we see that 7 | 32n+2 − 2n+1 as claimed. Thus by induction, the statement is
true for all integers n ≥ 0.
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Problem 6.22 This one is a little trickier. We use as a base case n = 2, in which case the statement
is

Prove that if A1, A2 are sets, then (A1 ∩ A2)
c = Ac

1 ∪ Ac
2.

which hopefully one recognizes as a statement of one of De Morgan's laws. Thus the
base case has already been proven in the past, and so we will not redo it here.

So let us move on by induction on the number of sets. Suppose that it is true for some
integer n, or that

(A1 ∩ · · · ∩ An)c = Ac
1 ∪ · · · ∪ Ac

n

and consider (A1 ∩ · · · ∩An ∩An+1)
c. We can write this as

(
(A1 ∩ · · · ∩An) ∩An+1

)c
,

or to be more precise, we write it as the intersection of two sets: A1 ∩ · · · ∩ An and
An+1. Thus we compute(

(A1 ∩ · · · ∩ An) ∩ An+1

)c
= (A1 ∩ · · · ∩ An)c ∪ Ac

n+1 by De Morgan's law

= (Ac
1 ∪ · · · ∪ Ac

n) ∪ Ac
n+1 by induction

= Ac
1 ∪ · · · ∪ Ac

n ∪ Ac
n+1

as we desired. Thus by induction, the statement is true for any number of sets.

Problem 6.25 (a) We induct on the number of elements in the set S = {x1, . . . xn}. If n = 1, then
being alone, it must be the largest element.

So assume it is true for every set of real numbers with n elements, and let S be
a set with n + 1 elements. If we consider S − {xn+1}, then this is a set with n
elements, and so it has a largest element xi. We have two cases to consider.

Case 1: xi > xn+1. In this case, then xi is the largest element in S; it is larger
than all elements including xn+1, and so we are done.

Case 2: xn+1 > xi. In this case, since xi is the largest element of S − {xn+1},
we must have that xn+1 is the largest element of S, and so S still has a largest
element.

Thus by induction, we are done.

(b) If S is �nite, then the set −S = {x | −x ∈ S} is also �nite, and so by the previous
exercise it has a largest element. That is, there is some −x ∈ −S such that for
all −y ∈ −S, −y ≤ −x. However, this implies that y ≥ x for all y ∈ S i.e. that
x ∈ S is the least element of S.

Problem 6.32 We will compute the �rst few numbers:

a1 = 1 a2 = 2 a3 = 4

a4 = 8 a5 = 16 a6 = 31

... Ok, I'm just kidding about that last one. a6 = 2a5 = 32, as I'm sure you know.
These are all powers of 2, and it ceratinly looks like an = 2n+1, a fact which is veri�ed
for these �rst few terms, all of which now form our base case(s).
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So assume that our formula is true for all integers up to n. Then we compute that

an = 2an−1 = 2 · 2n−1+1 = 2 · 2n = 2n+1

and so induction (strong induction?) proves it to be true for all n.

Problem 6.34 Without even looking at any recursive terms, I will conjecture that this sequence is
given by an = n2. Not that many sequences begin with 1, 4, 9, . . .

So the base case is given, and we proceed onwards. We assume that it is true for all
integers less than or equal to some �xed n, and we compute that

an+1 = an − an−1 + an−2 + 4n− 2

= n2 − (n− 1)2 + (n− 2)2 + 4n− 2

= n2 − (n2 − 2n + 1) + (n2 − 4n + 4) + 4n− 2

= n2 + 2n + 1 = (n + 1)2

and so by induction, it follows that this is true for every n.

Problem 6.36 We will make the following conjecture: For every integer n > 0, we have

n2∑
i=(n−1)2+1

i = (n− 1)3 + n3.

Note that this is veri�ed in the book for the �rst 4 terms.

To simplify things, we will introduce the notation

`n =
n2∑

i=(n−1)2+1

i and rn = (n− 1)3 + n3.

Now, we note that if we sum together the `i's, that we obtain

n∑
i=1

`i =
n2∑
i=1

i =
n2(n2 + 1)

2
.

We will use this fact as the basis for our induction.

Suppose that our statement (that `n = rn) is true for all integers 1 ≤ k < n. By the
statement above, we �nd that

`n =
n2(n2 + 1)

2
− (`1 + · · ·+ `n−1).

By the induction hypothesis, each of the `k on the right-hand side can be written as
rk; that is,

`n =
n2(n2 + 1)

2
− (r1 + · · ·+ rn−1).
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However, as rk = (k − 1)3 + k3, we can rewrite this as

`n =
n2(n2 + 1)

2
−

n−1∑
i=1

ri

=
n2(n2 + 1)

2
−

n−1∑
i=1

(
(i− 1)3 + i3

)
=

n2(n2 + 1)

2
−

n−2∑
i=1

i3 −
n−1∑
i=1

i3

=
n2(n2 + 1)

2
− (n− 2)2(n− 1)2

4
− (n− 1)2n2

4

=
2n2(n2 + 1)− (n− 2)2(n− 1)2 − (n− 1)2n2

4

which after a fair amount of simpli�cation is equal to (n − 1)3 + n3 as desired (check
this yourself!), and so the statement is proven.
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