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1) Use the division algorithm (write all steps clearly) to find the greatest
common divisor of (20785,44350).

2) Use the extended Euclidean algorithm to express the greatest com-
mon divisor of (34709, 100313) as a linear combination of the two
integers.

3) Show that if k is a positive integer, then (3k + 2) and (5k + 3) are
relatively prime.

4) Suppose that two players begin with a pair of positive integers and
take turns making moves of the following type. A player can move
from the pair or positive integers {x, y} with x ≥ y to any of the pairs
{x− ty, y} where t is a positive integer and x− ty ≥ 0. A winning move
consists of moving to a pair with one of the entries being equal to 0.
Show that every sequence of moves {a, b} must eventually end with the
pair {0, (a, b)}.

5) Let S = {a + b
√
−5 | a, b ∈ Z}. If α = a + b

√
−5, let N(α) = αᾱ

where ᾱ is the conjugate (a− b
√
−5). Show that if α, β are in S then

N(αβ) = N(α)N(β).

6) An element α in the set S above is prime if it cannot be written as
a product of two numbers in S without one of them being equal to ±1.
Show that 2 is a prime number in S and factor 19 into a product of
primes in S.

7) Find the least common multiple and greatest common divisor of 343
and 999 using the fundamental theorem of arithmetic, in detail.

Show that if a and b are positive integers with (a, b) = 1 then (an, bn) =
1 for all positive integers n.

8) Show that
√

2 +
√

3 is irrational.

9) Show that log2 3 is irrational.

10) Suppose a and b are two positive integers. When is (a, b) = [a, b]?
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