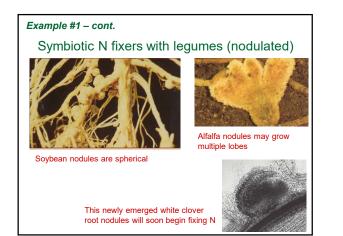
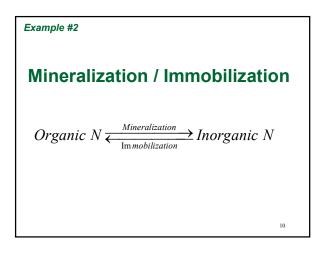
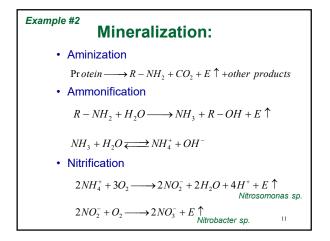


The losses of soil N occur through:


- Plant removal
- Leaching
- Gaseous losses (denitrification^{\otimes} and NH₃ volatilization)
- · Erosion (wind and water)
- Ammonium fixation (clay complexes)
- Processes that are mediated by soil organisms

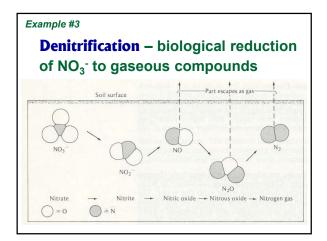


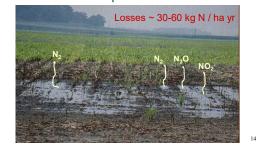

Example #1 - cont.
Biological N fixation

$${}^{0}_{N_{2}} + 8H^{+} + 8e^{-} \xrightarrow{Nitrogenase}{(Fe,Mo)} \rightarrow {}^{3-}_{2N}H_{3} + H_{2}$$

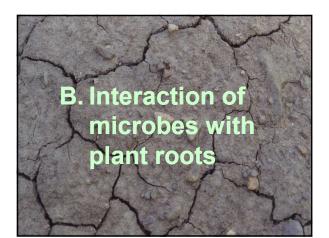
Estimated amount of N fixation in
terrestrial ecosystems is ~139 million t
N per year

Typical levels of biological N fixation		
Crop or plant	Associated organism	Typical level of N fixation (kgN/ha/yr)
<u>Symbiotic</u>		
Legumes (nodulated)		
Alfalfa	Bacteria (Rhizobium)	150 - 250
Clover	Bacteria (Rhizobium)	100 – 150
Vetch	Bacteria (Rhizobium)	50 - 150
Non-legumes (nodulated)		
Alders (Alnus sp.)	Actinomycetes (Frankia)	50 - 150
Non-legumes (non-nodulated)		
Bahia grass	Bacteria (Azotobacter)	5 - 30
Non-symbiotic		
Not involved with plants	Bacteria (Azotobacter, Clostridium)	5 - 20



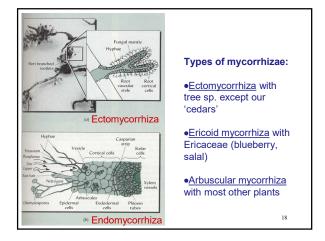

Mineralization and microbes involved

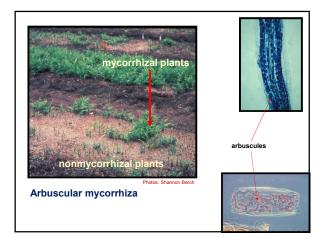
- Aminization \rightarrow heterotrophs (bacteria and fungi)
- Ammonification → heterotrophs (bacteria, actynomicetes, fungi)
- Nitrification \rightarrow chemo-autotrophic bacteria

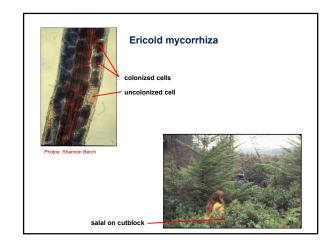


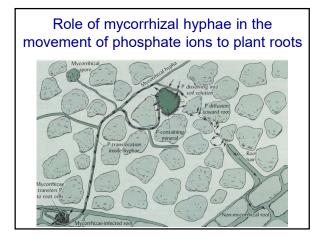
Example #3

Denitrification bacteria live under anaerobic conditions, such as those in saturated, compacted soils

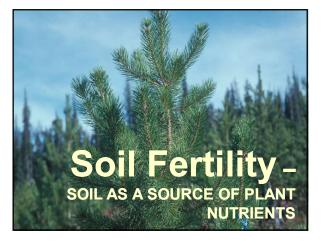


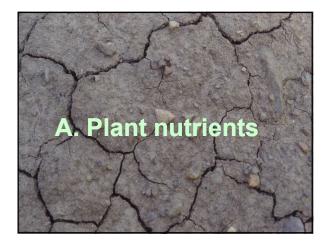






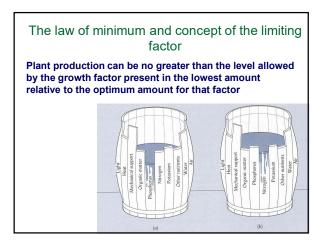
Mycorrhizae is a mutually beneficial, symbiotic association between plants and fungi, where fungus provides nutrients, while plant provides sugars from photosynthesis




Dead cells and exudates released from a corn root

Rhizosphere is the space near roots where microbes (e.g. bacteria) feed on dead root cells and exudates (sugars, proteins) 22

24



Soil fertility is study of soils' ability to supply nutrients needed for plant growth

An element is considered as an <u>essential</u> if:

- A deficiency on an element makes it impossible for the plant to complete the vegetative or reproductive stage of its life cycle.
- Such deficiency is specific to the element in question and can be prevented or corrected only by supplying this element.
- The element is directly involved in the nutrition of the plant in a such way that it is a constituent of a necessary metabolite (e.g. S in amino acids methionine or cysteine).

The 17 elements considered as <u>essential</u> are:

- Macronutrients: C, H, O, N, P, K, Ca, Mg, S
- **Micronutrients**: Fe, Mn, Cu, Zn, Ni, B, Mo, Cl

C, H, and O account for 90-95% of plant dry weight. All organic compounds contain C and nearly all contain H and O.

29

N, P, and K are taken up by plants in large amounts. Their deficiencies are quite common and treated by fertilizer application.

30

26

28

Ca, Mg, and S are taken up by plants in moderate amounts. Their deficiencies are less common than for N, P, and K.

The 17 elements considered as <u>essential</u> are:

- **Macronutrients**: C, H, O, N, P, K, Ca, Mg, S
- Micronutrients: Fe, Mn, Cu, Zn, Ni, B, Mo, Cl

32

Beneficial elements (e.g. Co,

Na, Si) are required by some plant species and their essentiality to plant growth has not yet been confirmed.

33

31

Some forms and functions of essential elements in plants

Element	Forms and functions	
С, Н, О	All plant organic components	
N and S	Amino acids—constituents of proteins	
	Proteins—enzymes, storage compounds, and membrane components	
N and P	Nucleotides—energy transfer (e.g., ATP), electron transfer (e.g., NADP), genetic information (DNA and RNA)	
P	Phospholipids-membranes	
	Inorganic phosphate—synthesis of ATP	
К	K ion—enzyme activator, osmotic regulator	
Ca	Complexed as calmodulin—regulator of many cell processes	
	Attached to cell membranes—stabilizer	
Mg	Complexed as chlorophyll—photosynthesis	
and a current of the	Complexed with ATP—energy transfers	
Fe	Complexed as cytochromes-electron transfers	
Mo	Component of enzymes-N ₂ fixation and nitrate reduction	
Ca, Mg, Mn, Cu, Zn	Associated with enzymes—activators	