MATH 312: ASSIGNMENT 2

 DUE DATE: SEPTEMBER 28, 20121) Prove that the integer $Q_{n}=n!+1$, where n is a positive integer, has a prime divisor greater than n. Use this to show that there are infinitely many primes.
2) Show that there are no prime triplets of the form $p, p+2$ and $p+6$.
3) Show that there are infinitely many primes that are not one of the primes in a pair of twin primes. (Hint: Use Dirichlet's theorem.)
4) Use the Prime Enumeration Sieve to list all prime numbers between 50 and 100 ,
5) Show that the greatest common divisor of an even number and an odd number is odd.
6) What is $\left(a^{2}+b^{2}, a+b\right)$, where a and b are relatively prime integers that are not both 0 .
7) How many digits is the n-th prime where $n=598709$ likely to have?

Date: September 21, 2012.

