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Radiative Transfer

Introduction

We are going to set the stage for a deeper look at astrophysical
sources of radiation by defining the important concepts of radiative
transfer, thermal radiation and radiative diffusion.

One can make a large amount of progress by realizing that the dis-
tances that radiation typically travels between emission and detection
or scattering etc. are much longer than the wavelength of the radia-
tion. In this regime we can assume that light travels in straight lines
(called rays). Upon these assumptions the field of radiative transfer is
built.

Flux

Let’s start with something familiar and give it a precise definition.
The flux is simply the rate that energy passes through an infinitesi-
mal area (imagine a small window).

dE = FdAdt (1)

For example, if you have an isotropic source, the flux is constant
across a spherical surface centered on the source, so you find that

Ei = F{47tR? and E, = F47R3 (2)

at two radii around the source. Unless there is aborption or scattering
between the two radii, E; = E; and we obtain the inverse-square law
for flux
2 2
FR? = KRS )

Intensity

Although the flux is a useful quantity, it cannot encapsulate all of our
knowledge about a radiation field. For example, one could shine a
faint light directly through a window or a bright light through the
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same surface at an angle. Both of these sitautions are characterized
by the same rate of energy flow through the surface, but they are
clearly different physical situations.

A more generally useful quantity quantifies the rate that energy
flows through a surface in a particular direction (imagine that the
window now looks into a long pipe so that only light travelling in a
particular direction can pass through,

dE = [dAdQdt 1)

where [ is the intensity. Although this quantity seems a bit kludgy, it
is actually quite familiar. It is the brightness.

You look at a light bulb. As you move away from the light bulb,
your eye receives less flux (F decreases) and the apparent size of
the light bulb also decreases (d() decreases). It turns out that these
two quantities both decrease as R~2, so the intensity or brightness is
conserved along a ray. This result makes the intensity a terrifically
useful quantity.

Relation to the flux

From the example at the beginning of this section we can deduce the
relationship between the flux and the intensity of the light. Radiation
that travels perpendicular to a surface delivers more energy to that
surface than radiation travelling at an angle. You can always imagine
second surface perpendicular to the light ray through which all of the
energy that reaches the first surface travels. We know that intensity is
the same along the ray so

dE = I1dA,dQdt = IdA,dQdt (5)

and dA; = cosfdA4, so the total flux travelling through the surface is
given by a moment of the intensity

F= / I cos 040 ©)

Figure 1: Flux and intensity. On the left
the power delivered to the two surfaces
are equal even though their areas differ.
The flux is the power per unit area so
the tilted surface gets less flux. On the
right intensity is the power delivered to
an area from a particular part of the sky
(solid angle). Here the two intensities
are equal but the upper set of rays
delivers less flux.
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If I is constant with respect to angle, there is as much energy travel-
ling from left to right as from right to left, so the net flux vanishes, or
more mathematically the mean of cos 6 vanishes over the sphere.

Something to think about The Sun is equally intense in the summer
and winter (if you exclude the effects of the atmosphere), then why
are winters colder than summers?

A closely related quantity is the pressure that a radiation field ex-
erts on a surface. Pressure is the rate that momentum is delivered to
a surface in the direction perpendicular to the surface. The momen-
tum of light is E/c and the rate that energy is delivered to a surface
from light travelling around a particular direction is simply I cos 84Q).
The component of the momentum that is directed perpendicular to
the surface is E cos6/c, so there is a second factor of cos 0 yielding
the following integral.

p:%/iméwn. @)

Something to think about Does the radiation pressure from an isotropic
radiation field vanish?

Spectra

The quantities that we have defined so far can be examined as a func-
tion of the frequency or wavelength of the radiation or the energy of
the individual photons, yielding F,, Fg, F) and also for the intensity,
e.g

dE = F,dvdAdt 8

and F, is called the specific flux. The use of F, is so common that
astronomers have a special unit to measure F,

1Jansky =1]Jy = 1072°W m2Hz ! = 10_23erg em'sT1HZ L (9)

This unit is most commonly used in the radio and infrared, and
sometimes in the x-rays.
A common combination that people use is

dF _ dF
dv — dinv’

EFg = AF, =vF, =v (10)
This allows you to convert between F, and F) etc. And it also gives
the flux per logarithmic interval in photon energy or frequency. This
is really handy since astronomers like to use log-log plots. A spec-
trum that goes as F, o« 1/v has a constant amount of energy per
logarithmic interval.
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Something to think about A source emits at 1 Jansky from 100 MHz
to 1 GHz and at 1 yJy from 1 to 10 keV. Is it brighter in the radio or
x-rays?

An Astronomical Aside: Magnitudes

Astronomers typically speak about the flux of an object in terms of
magnitudes. A magnitude is generally defined as

e

m=—25 loglo/0 g(v)F, adv + my. (11)

What are the different quantities in this expression? Pogson em-
pirically determined the value of “2.5” by comparing the magni-
tudes of prominent observers of the 1800’s. It is remarkably close to
In10 ~ 2.3, so a change in magnitude of 0.1 is about a ten-percent
change in flux.

Another term in the expression is ¢(v), the filter function that
determines which part of the electromagnetic spectrum you're are
looking at. If g(v) = 1, the quantity is called a “bolometric magni-
tude.”. It is supposed to quantify the total energy coming from the
source. One also hears about a quantity called the “bolometric correc-
tion” which is simply the difference between the magnitude of source
for a particular filter (¢(v)) and for g(v) = 1.

F(v,Q) is the flux coming from the source as a function of fre-
quency integrated over a certain area of sky, (). For a star one gener-
ally can extrapolate the flux that one observes in the sky to the total
flux, but the intensity from a galaxy or other extended source gener-
ally falls off gradually so one defines a magnitude within a certain
aperture or down to a limiting intensity (surface brightness).

The final term is my, the zero point. The value of the zero point
is a matter of convention. Two of the standard conventions are the
“Vega” convention which states that the magnitude of the star Vega
regardless of the function g(v) is zero; all of Vega’s colours are zero.
This works nicely because you could always in principle observe
Vega with your equipment.

There are two problems however. One is that the flux from Vega
like that of most stars varies a bit. The second is that an object with
a flat spectrum (equal energies in each frequency interval) will have
an awkward set of colours (the difference in magnitudes for two
different ¢(v) functions). This leads to the second convention, the AB
system.

m(AB) = —2.5log,, fy — 48.60 = —2.5logy, ({;y) +890  (12)

where f, is the flux in c.g.s. units. The constants “8.90” and “-48.60”
mean that m(AB) = V for a flat spectrum source.



Something to think about How do you define an AB magnitude using
a filter?

A final quantity that astronomers talk about is the surface bright-
ness. This is just the intensity that we have been speaking about all
along. However, the conventional nomenclature is rather strange,
magnitudes per square arcsecond.

Something to think about What is the magnitude of a source that
subtends 10 square arcseconds with a surface brightness of 19 magni-
tudes per square arcsecond?

Energy Density

Let’s imagine that light is travelling through a small box. How much
energy is in the box at any time? First it is easiest to think about how
much energy in the box is travelling in a particular direction through
the box during a small time interval such that cdt is the length of the
box,

dE = u(Q))dAcdtdQ) (13)

This energy equals the energy that enters the box travelling in the
right direction during the time interval dt,

dE = IdAdtdQ (14)

)
cu(Q) =1. (15)

To get the total energy density you have to integrate over all of the
ray directions

_ 1 |
u= E/IdQ =4’ (16)

where ] is the mean intensity. Notice how it differs from the flux
defined earlier.

Let’s revisit the radiation pressure formula. But let’s assume that
the radiation field is isotropic, so I = | for all directions, we get

p = %/ICOSZ 64 (17)
1 rm 21 9.
= E/o ./0 J cos” 0sin 0d0d¢ (18)
1 1T 3™ 4T 1
= EI (27‘[ gcos 90> —gnz—?’u. (19)

A Physical Aside: What are the Intensity and Flux?

How do the intensity and flux fit in with more familiar concepts like
the flux of a vector field? They really don't.

ASTROPHYSICAL PROCESSES
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One can define the flux in three perpendicular directions by ask-
ing how much energy flows through three mutually perpendicular
planes. This flux vector transforms like a vector under rotations, but
it doesn’t transform like a four-vector under boosts. The flux vector
fills in the time-space components of the stress-energy tensor of the
electromagnetic field. We have also calculated the time-time compo-
nent which is the energy density and the space-space components,
the pressure. To calculate how the flux transforms with respect to a
boost (or Lorentz transformation) by transforming the entire tensor.

The intensity (I,) as we shall soon see is simply related to the
phase-space density of the ensemble of photons.

Blackbody Radiation

Blackbody radiation is a radiation field that is in thermal equilib-
rium with itself. In general we will find it convenient to think about
radiation that is in equilibrium with some material or its enclosure.
Using detailed balance between two enclosures in equilibrium with
each other and the enclosed radiation we can quickly derive several
important properties of blackbody radiation.

¢ The intensity (I,) of blackbody radiation does not depend on the
shape, size or contents of the enclosure.

¢ Blackbody radiation is isotropic.

What remains is the temperature and the frequency. Because the
intensity is a universal function of T and v, we have

Kirchhoff’s Law: I, = B,(T) for a blackbody at temperature T.
(20)
Because heat flows from a hotter system to a cooler system we know
that if Ty > Ty, By(T1) > By(T3) for all values of v. To see this, imag-
ine a filter that only lets light pass over a narrow range of frequencies
in the hole between the enclosures. If this condition did not hold, one
could have energy flowing from the cooler to the hotter enclosure.

Thermodynamics

The blackbody radiation in its enclosure is a system in equilibrium
so we can use the equations of thermodynamics to glean some more
of its properties. If we deliver some heat dQ to the blackbody, it can
change the internal energy of the blackbody dU or do work pdV. The
heat delivered also equals the change in entropy of the system times
the temperature of the system.

dQ = TdS = dU + pdV. (21)



Now U is simply the energy density times the volume of the enclo-
sure so dU = udV + Vdu/dTdT and we showed the p = u/3. Let’s
put this together

du 1
TdS = udV + Vd—TdT + gudV. (22)

If we rearrange and solve for the derivatives we get

8\ _Vdu  (05\ _du o
oT ), ~ TdT \av), 3T 3
Let’s take the partial derivative of the first expression with respect to

V and the second expression with respect to T and set them equal

ldu 41du 41

TdT ~3TdT 3712 (4)
Let’s solve for du/dT to get
du 4u
I (25)
so
Stefan-Boltzmann Law: u = aT* (26)

ASTROPHYSICAL PROCESSES

where a is a constant of integration. The value of a is 7.56 x 101> erg cm 3K*.

Something to think about Why does du/dV vanish?

We found that for an isotropic radiation field the energy density is
simply related to the intensity, u = 47t]/c. For a blackbody | = B(T)
so we have

ac
B(T) = - 4

Let’s imagine that our blackbody enclosure has a small hole of area

(27)

dA in it. How much energy emerges through this hole

w/2 21
FdA = / cos0B(T)dQ) = B(T)/ / cos 0sin0d0d¢ = nB(T).
out 0 0

(28)
We write this more compactly by defining o = ac/4 so we have
Another Stefan-Boltzmann Law: F = ¢T* (29)
where ¢ = 5.67 x 1075 erg cm2s 7 1K~*.
Using the earlier results we can also derive the entropy of the
radiation field
S = éaT3V. (30)

3

7
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Statistical Mechanics

We have managed to derive several interesting properties of black-
body radiation but we still have no idea what its spectrum is. To
figure this out we have to think about the microscopic properties of
the radiation field. Let’s imagine that we have blackbody radiation in
a box whose wavenumber k, ranges from ky to ky + dk. How many
different types of waves lie in this interval?

You may be tempted to say as many as you want, but the waves
are trapped in a box. Let’s say that the box has length I, in the x-
direction; therefore, kI, = 27ny, where n, is an integer so that the
radiation field has a node at the edges of the box, so between k, and
ky + dk there are only 2dkl, /(27) different states. The factor of two
arises because the waves have two independent polarization states. If
we imagine a small cube in phase space of size dk.dk,dk. we get

byl 5 dV

3
2n) (271)3d k. (31)

dN =2

Now we have d®k = k?dkdQ) and k = 27tv/ ¢ so

3
Bk = dvdQ <2C7? 12 (32)

We find that the density of states is given by

Ps = qvdodv =~ &3 33

The energy density (1, (Q))of the radiation field is simply the density
of states times the mean energy per state and cu, (Q)) = .

Classically we find that the mean energy per state is simply given
by kT. Let’s try this out for size,

uclassical(Q) - = kT. (34)

v

This is the great Rayleigh-Jeans law and it actually works pretty well,
unless you look at large frequencies and find that the total energy
B(T) is infinite. This is called the Rayleigh-Jeans (or ultraviolet) catas-
trophe.

The solution to this problem ushered in the era of modern physics.
Planck argued that if light comes in discrete packages (photons)
whose energy is proportional to the frequency we can solve this
problem (E = hv). Let’s try a really simple minded approach to
assume that only photons with E < kT are in the radiation field then
we have

u

22
classical fixed?(n) _ { P kT hv <kT (35)

v 0 hv > kT
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Let’s integrate u, over the frequency range and solid angle to get

3 4
u _ 8mkT (kT) _ 8mk Tt

classical fixed? 30 7 = W . (36)

This has the right behaviour and the numerical constant differs from
the actual value by a factor of about 20.

It turns out that we can do a whole lot better. According to statis-
tical mechanics the probability of a state of energy E is proportional
to e PE where B = 1/(kT). The energy in a particular state is pro-
portional to the number of photons in the state E, = nhv. The mean
energy in a state is given by

Z;o:o Ene_ﬁE"
Yo e PEn

Notice that the expression on the top is the derivative of the expres-

E= (37)

sion on the bottom with respect to 8, so we find

o (e
E=—ggln (Z eﬁE”) : (38)

We haven’t assumed anything about the states themselves yet, so this
result would apply for any system. Here we know that E, = nhv so

7ﬁE" = n = =
N o)
SO "
- v
E= (40)
For hv < kT Bhv < 1 so we have

1+pw—1  Bhv
the classical result. But for hv >> kT we have phv > 1
E = hvexp(—phv). (42)

If we use this value with the density of states we get the Wien law.
Let’s derive the expression for the spectrum for all frequencies. We
have the value of energy density

2h V3
uy () = 3 exp(hv/kT) — 1 43)

so that
v 4
cz exp(hv/kT) -1 44

Wien’s displacement law gives the frequency of the peak of the

Planck’s Law: By (T) =

blackbody curve B,
NVmax ~ 2.821439kT (45)

Or Vmax = 58.79T GHz/K.
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Something to think about At what energy does the flux per logarith-
mic energy interval reach its peak? How about flux per unit wave-
length?

Let’s try to find the value of g, the constant in the Stefan-Boltzmann
Law. First we have

87th V3

wy = 4 (Q) = =5 e

(46)

The total energy density is [ u,dv

A S Y
B 3 exp(v/kT)—1"" 3 \ h 0 ex—10 W

The integral can be evaluated using a Taylor series

/oo x dx:/oo x—/ Ze”xdx—Z() (48)
0o e*—1 0 — nt
to yield /15 (see § for further details),so
5 k4 2 k4
u = aT* where a = s K rr (49)

15 (he)® 15 (hc)®

The number density of photons can be determined in a similar way

1/ ”

but the exponent in the integral is

_165(3)7k> 5

instead of “3” yielding

T (50)
so the mean energy per photon is given by
u -
o= 3003 )kT~2701kT (51)

Coincidentally the numeric factor differs from e by less than one
percent.

Blackbody Temperatures

A blackbody is of course characterized by a single temperature, T.
However, it is often convenient to characterize the radiation from
astrophysical sources by assuming that it is a blackbody and using
some property of the blackbody spectrum to derive a characteristic
temperature for the radiation. There are three characteristic tempera-
tures in common usage: brightness temperature, effective temperature
and the colour temperature.

The brightness temperature is determined by equating the bright-
ness or intensity of an astrophysical source to the intensity of a black-
body and solving for the temperature of the corresponding black-
body.

I, = By(Ty). (52)
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This expression is most useful in the regime where the intensity of
the blackbody is proportional to the temperature i.e. the Rayleigh-
Jeans limit. Here we have,
T,— S (53)
b= 22k V- 53

The brightness temperature has several nice properties. For one thing
it has units of Kelvin rather than something clumsy. Second if a
material is emitting thermal radiation one can obtain a simple expres-
sion of the radiative transfer equation (see the problems).

Something to think about In what regime does the linear relationship
between the brightness temperature and the intensity begin to fail?
How can you tell?

The colour temperature is defined by looking at the peak of the
emission from the source and using Wien’s displacement law to
define a corresponding temperature. This may be done in a more
sophisicated manner by fitting a blackbody spectrum or something
like that.

Finally the effective temperature is the temperature of a blackbody
that emits the same flux at its surface as the source, i.e.

F =0Ty (54)

Radiative Transfer

As a ray passes through some material its intensity may increase or
decrease depending on the properties of the matter. To understand
this process it is helpful to make some defintions.

Emission

Generally material has two routes for the emission of radiation: stim-
ulated emission and spontaneous emission. The rate of the former
is proportion to the intensity of the beam so it is convenient to lump
it with the absorbing properties of the material. The spontaneous
emission is independent of the radiation field.

Let’s define the spontaneous emission coefficient, j. This is the energy
emitted per unit time into unit solid angle from a unit volume, so we
have

dE = jdVdQdt (55)

and similarly
dE = j,dVdQdtdv. (56)

11
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If the emitter is isotropic or the emitters are randomly oriented then
the total power emitted per unit volume and unit frequency is

P, = 4mjy. (57)

Often the emission is isotropic and it is convenient to define the
emissivity of the material per unit mass

Q
dE = evpdthdvE (58)

where p is the density of the emitting medium. e, is simply related to

jv for an isotropic emitter
= P
LT
As a beam travels through the material, its intensity increases such
that

(59)

dl .

—y = v (60)
Here is the first term in the equation of radiative transfer. We know
what I, is and we will spend much effort figuring out what j, is for

different physical systems.

Absorption

The equation for absorption is similar, except that amount of absorp-
tion is proportional to the intensity of the radiation. You can’t absorb
radiation that isn’t there.
al,
ds

Phenomenologically you can imagine that there are many indepen-

= —ayl,. (61)

dent absorbers in the beam, each with a cross section ¢, and a num-
ber density n. This would yield

&y = oyn. (62)

It is often convenient to define a, = px, where x, is the opacity of the
material. You can think of this as the cross section per unit mass of
the absorbers.

The quantity &, has both positive and negative contributions.
The positive contributions are true absorption and the negative ones
correspond to stimulated emission.

The Radiative Transfer Equation

Putting these equations together yields the radiative transfer equa-

tion,
dl,

ds = —ayly +jv~ (63)
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Once we know a, and j, for the system of interest, it is straight-
forward to solve the equations of radiative transfer. We shall see a
formal solution a bit later. If there is scattering as well as absorption
and emission, things get a bit more complicated.

Let’s look at a few examples.

1. Emission only

dl,
% =Jv (64)

yields the solution

L(s) = Lu(so) + /SS jV(S/)dSI (65)

The increase in brightness is simply the integral of the emission
coefficient along the line of sight. This limit is also know as the
optically thin regime (absorption can be neglected).

2. Absorption only
dl,

E = 70(1/11/ (66)
which yields

"S

L(s) = I, (so) exp [/s av(s’)ds’} (67)

0

The result for pure absorption inspires us to look at the radiative
transfer equation again. Let’s define, the optical depth,

T, = /S ay(s')ds' (68)

such that dt, = «a,ds

3. Emission and absorption Using this defintion we get the follow-
ing equation of radiative trasnfer,

dl,
E =—-I,+Sy (69)
where .
S, = ZT (70)

is called the source function. It has the same units as the intensity. It
allows a formal solution of the transfer equation

T ,
L(t) = L(sg)e ™ —i—/o e*(TV*Tv)SU(Té)dTé. (71)

This expression makes a lot of sense. The first term is the radia-
tion that we start with and attentuated through the medium. The
second term is the sum of all the radiation emitted in the medium

13
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and attentuated from where it is emitted until it escapes. If we
have a source with a constant value of S,, the solution is much
simpler

L(tw)=L(sp)e " +Sy(1—e ™) =S, +e ™ (L(0)—Sy)). (72)

The intensity field approaches the source function as the optical
depth increases.

Thermal Radiation

Let’s imagine a blackbody enclosure, and we stick some material
inside the enclosure and wait until it reaches equilibrium with the
radiation field, I, = B,(T). Now let move the material in a position
the blocks our window to the enclosure. What can we say about the
source function of the material?

We know that as light travels through the material the intensity
field should approach the source function but we also know that the
light emerging from the window must have I, = B, (T). If it didn't,
we could set up an adjacent blackbody enclosure at the same tem-
perature and energy would flow between them. We must conclude
that

Another Kirchoff’s Law: S, = B,(T) for a thermal emitter  (73)

Furthermore, we can look at the transfer equation that yields,

al,
TR = —IV+BU(T)- (74)

Because I, = B,(T) outside of the thermal emitting material and
Sy = By(T) within the material, we find that I, = B, (T) throughout
the enclosure.

If we remove the thermal emitter from the blackbody enclosure
we can see the difference between thermal radiation and blackbody
radiation. A thermal emitter has S, = B, (T), so the radiation field
approaches B, (T) (blackbody radiation) only at large optical depth.

Einstein Coefficients

Kirchoff’s law yields a relationship between the emission and ab-
sorption coefficients for a thermally emitting material, specifically
jv = ayBy. This relationship suggests some connection between emis-
sion and absorption at a microscopic level. It was Einstein that first
elucidated this connection.

Let’s imagine a two-level atom. The lower level has energy E and
statistical weight g7. You can think of the statistical weight as the
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number of ways that the atom can be in the particular state, the de-
generacy of the state. The second level has an energy E + hvy and a
statistical weight of g».

There are three possible transitions,

1. Spontaneous Emission with probability per unit time of Ay;.
2. Absorption with a rate proportional to the angle-averaged inten-
sity of the radiation field (], (vp)) times the coefficient By;.

Technically the atom does not absorb at precisely one frequency
but over a width év. To simplify matters we will take v — 0 and
the line profile ¢p(v) — d(v —vp).

3. Stimulated Emission with a transition rate of By Jy ().

For the system to be in thermodynamic equilibrium, the number
of transitions from level one to two must equal the reverse transi-
tions,

n1B12 ]y (vo) = n2Az + n2Bs1Ju(vo). (75)
Let’s solve for J,(vg),

112 Aoy

V) = —————. 6
We know that the system is in thermodynamic equilibrium so
n 4l exp(—E/kT) 4l
e = > exp(hvy/kT).
ny  goexp(—(E+hv)/kT) g p(hvo/kT) (77)
Let’s substitute this into the earlier result
A
2 (78)

Ju(vo) = (g1/%2) exp(hllo/kT)Bu — By

We know that since the system is in thermodynamic equilibrium with
the radiation field J, = B, (T)

n = il (79)
C2 eXp(hl/o/kT) -1 o (81 /82) exp(hvo /kT)Blz — 821 79
o A21 1 p
- B (80)
Bo1 (81/82) exp(hvo/kT)B12/ By — 1

Because the temperature T may be set arbitrarily we must have the
following relationships

2h3
An = —5 B, (81)
g1Bin = gBa. (82)

Because the Einstein coefficients are properties of the atom alone,
they do not depend on the assumption of thermodynamic equilib-
rium. They are quite powerful. If we calculate the probability of

15
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absorption of a photon for example, we can use the Einstein relations
to find the rate of stimulated and spontaneous emission. This proof
is an example of the principle of detailed balance of a microscopic pro-
cess.

Something to think about Can you use the principle of detailed bal-
ance to say anything about the relationship between the stimulating
and the stimulated photon?

A Physical Aside: What is deep about the Einstein coefficients?

The Einstein coefficients seem to say something magical about the
properties of atoms, electrons and photons. Somehow atoms are
forced to behave according to these equations. It turns out that the
relationships between Einstein coefficients (1917) are an example of
Fermi’s Golden Rule (late 1920s). Fermi’s Golden Rule relates the
cross-section for a process to a quantum mechanical matrix element
and the phase space available for the products. Because quantum
mechanics for the most part is time reversible, the cross-section for
the forward and reverse reactions are related.

Calculating the Emission and Absorption Coefficients

We can write the emission and absorption coefficients in terms of

the Einstein coefficients that we have just exmained. The emission
coefficient j, has units of energy per unit time per unit volume per
unit frequency per unit solid angle! The Einstein coefficient Ay; gives
spontaneous emission rate per atom, so dimensional analysis quickly

gives
v = %Vlzt‘\mqb(v) 83)
The absorption coefficent may be constructed in a similar manner
oy = %G”(V) (n1B1p — n2Bo1) (84)

We can now write the absorption coefficient and the source function
using the relationships between the Einstein coefficients as

 hv g1M2

a = —mBp (1_g2711> o(v) (85)
2w (gom -

5, = 2 <g1nz - ) . (86)

LTE

To derive these relations we have not made any assumptions about
whether the photons or the matter are in thermal equilibrium with



themselves or each other. An extremely useful assumption is that the
matter is in thermal equilibrium at least locally (Local Thermody-
namic Equilibrium). This assumption forms the basis of the theory of
stellar atmospheres.

In this case the ratio of the number of atoms in the various states is
determined by the condition of thermodynamic equilibrium

mo_ 8 hvo

o g exp (kT) . 87)
This ratio yields the following absorption coefficient and source
function

h h
Ky = én1312 |:1 — exp <—k,1;9>:| (88)
Sv == BV(T) (89)

Something to think about Because the source function equals the
blackbody function, does this mean that sources in local thermody-
namic equilibrium emit blackbody radiation?

Non-Thermal Emission
In any situation where

ni g 1 hVO
. # 5 exp (kT) . (90)
(i.e.if the radiating particles do not have a Maxwellian distribution)
one has to use the full expression for the source function; a power-
law distibution oftens occurs astrophysically.
An extreme example of non-thermal emission is the maser. For
atoms in thermodynamic equilibrium we have

nag1 _ M
mgy exp ( kT) <1 (91)
so that
ny np
—= 2
o o (92)

which means that the absorption coefficient is always positive in
thermodynamic equilibrium. However, let us imagine a situation in
which

ok

81 &2
This yields a negative absorption coefficient, so the optical depth

(93)

decreases and becomes negative as one passes through a region
with inverted populations and the intensity of the radiation actu-
ally increases expontentially as the magnitude of the optical depth
increases. So we have to thank Einstein for the laser as well.

ASTROPHYSICAL PROCESSES
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Scattering

From the preceding discussion one might think that the theory of ra-
diative transfer simply relies on the application of the formal solution
using the Einstein coefficients for various processes of interest.

However, there is a big elephant in the middle of the room that
we have been ignoring — scattering. Why is scattering a prob-
lem? Couldn’t you think about scattering as the absorption and
re-emission of a photon and include the process in the absorption
coefficients and source functions? The answer is no.

The formalism that we have developed so far doesn’t allow there
to be a correlation between the properties of an absorbed photon
and the emitted photon. On the other hand, the initial direction and
energy of a scattered photon are generally highly correlated with the
photon’s final momentum.

We can first look at a process in which the photon is scattered
into a random direction without a change in energy. This yields an
emission coefficient of

v =0v]y. (94)
Notice that the emission rate depends on the radiation field through
J» and not solely on the properties of the scatterer through o,. If
isotropic scattering is the only process acting we find that the source
function

1 3
So=Jv = [ dOL. ©3)
The equation describing the evolution of the radiation field is still
rather innocuous looking

% =—o (b =Jv). (96)
However, it is a completely different beast. The evolution of the in-
tensity of a particular ray depends not only the intensity of the ray
and the local properties of the material but also on the intensity of
all other rays passing through the same point — we have an integro-
differential equation.

If you think about things more generally, we had this same prob-
lem before introducing scattering because the properties of the emit-
ting and absorbing material usually depend on the radiation field.
Even if one neglects scattering, one often has to solve an integro-
differential equation.

Random Walks

We can get an order of magnitude feeling for how much scattering
will affect the radiation field emerging from a source using the con-
cepts of the mean free path and the random walk.



The mean free path for scattering (or similarly for absorption) is
simply the reciprocal of the scattering coefficient ¢,,.. So if we imagine
a single photon travelling through the material, it will go typically a
distance | = 0, ! then change direction. The net displacement of the
photon after N free paths is

R=r+rn+r3+- - +ry. (97)

However, on average it is as likely to go one way as the other so the
mean values of all of the r; vectors vanishes as does the sum. Let’s
ask instead how far the photon typically ends up away from the
starting point, here we have

RP? = [t 40P+ B2+ + ] (98)
+2r1-r2+2r1-r3+~~~ (99)

All of the cross terms vanish on average if the scattering is isotropic,
but <b fr12> ~ | = 0, ! so the net distance travelled after N scatter-
ings is
12 =NI?1, = VNL (100)

If some blob of gas has a typically dimension L we can estimate the
number of scatterings through the gas to be N ~ L2/I. This is why
people sometimes say that it takes a million years for a photon to
escape the sun.

In general if T is large the average number of scatterings N ~ 72
while fort < 1, N~ T

Combined Scattering and Absorption

In general a material can both scatter and absorb photons. In this
case the transfer equation has two terms. Let’s focus on coherent
isotropic scattering and thermal emission and get

dl,

o= —w (i =B) - (-] (z01)

= —(ay+0,) (L —5)) (102)

where 2By + 03]
S — vv vJjv
! &y + 0y (103)
The net absorption coefficient is &, + ¢,. On average a photon will

travel a distance 1

L, = %+ 0, (104)

before it is absorbed or scattered. The chance that the free path will

end in absorption is

Xy
€y =

N &y + oy (105)
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and the chance that it will be scattered is

%%
1—¢, = . 6
€y P, (106)
We can rewrite the source function as
Sy = (1 - 61/) Jv +evBy. (107)

After a photon is emitted it may bounce around several times before
it is absorbed; the average number of scatterings per absorption is
N = e, . After these N scatterings it will typically have travelled a
distance,
L=VNl=—— 1 (108)
ay (g + 0y)

L, is the typically distance between the points of creation and destruc-
tion of a photon — it is called the diffusion length, the thermalization
length, or the effective mean free path. If the material has some thick-
ness L, we can define the effective optical depth of the material to be
T = L/l,.

If T, is small, then a photon after being created in the medium,
bounces around until it emerges (it is usually not absorbed). In this
case the power emitted by material will simply be

Ly, =4na, BV, (1.<1) (109)

where B, is the source function (a blackbody for thermal emission)
without scattering and V' is the volume of the material. If 7, < 1 the
material is said to be effectively thin or translucent.

On the other hand, if 7, > 1, the medium is said to be effectively
thick. In this case only photons emitted within I, of the surface typ-
ically escape without being absorbed. We can estimate the power
emitted by

L, = 4na, By Al = 41\/e,ByA, (T > 1) (110)

Radiative Diffusion

We have used the random walk arguments to show that the radiation
field approaches a blackbody within a few effective mean paths (or
thermalization lengths) of the surface. Furthermore, the radiation
field becomes isotropic within a mean free path of the surface. We
will first look at the first situation in which the radiation field is
approximately a blackbody.

Rosseland Approximation

Because stellar atmospheres (i.e. the effective mean path) are gen-
erally thin compared to the size of the star, we can assume that this
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region has plane parallel symmetry; that is, the properties of the ma-
terial depend only on the depth from the surface z. The intensity will
generally depend on the depth and the angle that the ray makes with
the normal 6. It is generally convenient to use u = cos 0 instead of 6

itself.
oly(z,u) oly(z,u)  olL(zu)
I = cos 6 P —(ay+o0y) (I, = Sy).
(111)
Let’s rearrange this as
g M O
Li(z,u) =Sy PR (112)

Here comes the assumption. Let us assume that the properties of
the radiation field do not change much over a mean free path so the
second term is much smaller than the first; therefore;

IV(O) (z,u) = Sl(,o)(T). (113)

Because this is independent of the angle, ]V(O) = s (T), so s = B,
Let’s get a better approximation to the radiation field

(1) N __p 9By
IV (z, 1) ~ B,(T) o e

(114)

Let’s calculate the total flux of the radiation field.

_ (1) _ 9B 1 /+1 2

F/(z) = /IV cos0dQ) = —27 e du  (115)
47t 1 9B, 47 1 0B, dT

= = — = (116)
3 a,+0y 0z 3 ay+0y 0T 0z

We can integrate this over all frequencies to find the total flux

e} e}

F(z) = /0 F/(z)dv = —4?”3—2/0 (a0, + ) aa%dv. (117)
Unfortunately the integral above generally cannot be done analyt-
ically. However, we can elucidate some of its properties. First, the
absorption and scattering coefficients are summed harmonically so
regions of the spectrum that have the least absorption or scattering
will dominate the energy flow. Furthermore, the harmonic sum is
weighted heavily in the region where 0B, /9T is large, near the peak
of the blackbody emission.

One can define a mean absorption coefficient by

1 fooo (041/ + (71/)_1 aaB]l/dV 7T a _1 0By
E = d
TR e ) SO L

If we substitute this into the earlier expression we get

160 T3 oT
3ag 0z

F(z) = —

(119)
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where ap is the Rosseland mean absorption coefficient. In stellar
astrophysics one often uses the column density X as the independent
variable rather than z, dZ = pdz. Making the substitution yields

F(z) _ l6cT® 9T _  160T° 3T (120)
T Bag Pox T T Bkg on

where kg = ar/p is the Rosseland mean opacity.

Eddington Approximation

What if you are interested in the translucent upper layers of the at-
mosphere within a few effective mean paths of the surface but still
a few mean free paths (scattering lengths) away from the surface. In
this region, the radiation field is nearly isotropic, but it need not be
close to a blackbody distribution.

Because the intensity is close to isotropic we can approximate it by

Iy(z, ) = ay(z) + pby(2). (121)

Let’s use the first three moments of the intensity

1 +1
I, = EL] Idy = ay, (122)
_ 1 b,
H, = 5[1 uldy = X (123)
1, oy
K, = E/_1 yldy—g (124)

J is the mean intensity and H and K are proporptional to the flux and
the radiation pressure, respectively. The Eddington approximation is the
result that

1
K=23J (125)

which we found earlier to hold for strictly isotropic radiation fields.
Here we find that it also holds for anisotropic radiation fields of the
form defined earlier.

Let’s define the normal optical depth,

dt, = — (ay +0y) dz (126)

yielding the radiative transfer equaition

ol
.”87,; =L, -5 (127)
where B
S, = w. (128)



The source function S, is isotropic, so let’s average the radiative
transfer equation over direction to yield

oH,
T

Let’s also average the radiative transfer equation times y over direc-

=Jv—=5y (129)

tion to yield
oK, _ 10,
ot 30t

=H, (130)

Something to think about What happened to S, in the equation
above?
We can combine the two equations (Eq. 129 and 130) to yield

182]1/
3 97?2

and using the definition of the source function gives

=J, =Sy (131)

182]1/ -], - ayBy + oy Jy
3972 ay + oy

=e (Jy—By). (132)

This is sometimes called the radiative diffusion equation. If you know
the temperature structure of the material you can solve the equation
for the mean intensity [, and then you know the source function

Sy explicitly and you can use the formal solution to the radiative
transfer equation to get the radiation field.

Problems

1. Hot cloud:

X-ray photons are produced in a cloud of radius R at the uniform
rate I' (photons per unit volume per unit time) as in Fig. 2. The

ASTROPHYSICAL PROCESSES

Figure 2: The central region of the
Crab Nebula as seen by the Chan-
dra X-ray Observatory. Credit:
NASA/CXC/SAO)
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cloud is a distance d away. Assume that the cloud is optically thin.
A detector at Earth has an angular acceptance beam of half-angle
A8 and an effective area AA.

(a) If the cloud is fully resolved by the detector what is the ob-
served intensity of the radiation as a function of position?

(b) If the cloud is fully unresolved, what is the average intensity
when the source is in the detector?

. Brightness Temperature:

From the equation of radiative transfer derive an equation describ-
ing how the brightness temperature changes as radiation passes
through a thermally emitting gas. You may neglect scattering and
assume that the emission is in the Rayleigh-Jeans limit. Solve this
equation to give the brightness temperature as a function of optical
depth, assuming that the gas has a constant temperature.

. Neutrino Blackbody:

Only one or no neutrinos can occupy a single state. Calculate the

spectrum of the neutrino field in thermal equilibrium (neglect the
mass of the neutrino). Neutrinos like photons have two polariza-

tion states. What is the ratio of the Stefan-Boltzmann constant for
neutrinos to that of photons?

. Blackbody radiation:

(a) Show that if stimulated emission is neglected, leaving only
two Einstein coefficients, an appropriate relation between the
coefficients will be consistent with thermal equilibrium between
an atom and a radiation field with a Wien spectrum, i.e. B,
v3exp[—hv/ (kT)].

(b) Derive the relationships between the Einstein coefficients of an
atom in equilibrium with a neutrino field.

. Surface Emission from the Crab Pulsar: The neutron star that

powers the Crab Pulsar can be assumed to have a mass of 1.4M,
and a radius of 10 km with constant internal density and an ef-
fective temperature of 10° K. The frequency of the Crab Pulsar is
30 Hz and its period increases by 38 ns each day. Compare the
power from the surface emission to the power lost as the neu-
tron star spins down. The total power of the Crab Nebulae is
about 75,000 times that of the Sun. What is the likely source of
this power?

Power-law Atmosphere: Assume the following
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¢ The Rosseland mean opacity is related to the density and tem-
perature of the gas through a power-law relationship,

KR = Kop‘xTﬂ;

* The pressure of the gas is given by the ideal gas law;

¢ The gas is in hydrostatic equilibrium so p = g% where g is the
surface gravity; and

¢ The gas is in radiative equilibrium with the radiation field so
the flux is constant with respect to z or X.

Calculate the temperature of the gas as a function of X.. Assum-
ing that the Crab pulsar has a surface or effective temperature of
10 K, what is the temperature at a density of 107 g/cm ™3 in the
interior of the neutron star? You may assume a = 2, ¢ = 10
cm/s? and

KR = 3.68 x 102g7/(1 — Z)(1 4+ X)pT 7/ ?em’g .
where p is given in g/cm ™3 and T is given in Kelvin.

. Goggles: Calculate from thermodynamic principles how much ob-
jects are magnified or demagnified while viewed through goggles
underwater.

. Intensity and index of refraction: How does the intensity of light
travelling along a ray change when the light enters a material with
a different index of refraction?

(a) Solve this problem using geometry.

(b) Solve this problem using thermodynamic principles alone.
N.B. The wavenumber of a photon of a given frequency is pro-
portional to the index of refraction.

25






Basic Theory of Radiation Fields

Maxwell’s Equations

Most of this material is probably familar, so this will only present a
quick review. The goals are to understand how charges move under
the influence of electromagnetic fields, how when the charges ac-
celerate, they emit electromagnetic radiation and how this radiation
transports energy. The electric and magnetic field may be defined
operationally by observing the motion of a particle of charge g trav-
elling through the field. The force on the particle is given by the
Lorentz force equation,

\4
F_q<E+E><B). (133)

The fields perform work on the particle at a rate
v-F=¢gv- E (134)

One can imagine an ensemble of charged particles of charge density
p and define the current to be J = pv. In this case we find that power
delivered on the charges per unit volume is simply

P=]J-E (135)

Note that the magnetic field B does not perform work on the particle.
It changes the direction of the particle’s motion but not its speed.

The equations that describe the dynamics of the fields are Maxwell’s
equations,

V-D =4mp V-B=0
47 10D 198
in Gaussian units. The fields D and H are related to E and B through

the constitutive relations

D =¢€E B =uH, (137)
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where € and y are in general matrices that depend on the fields ap-
plied, but in most situations they are constant scalars and for a vac-
uum they are simply one.

The equations were discovered by various people. Proceeding left
to right then top to bottom we have Gauss’s law, a law without a
name, Ampere’s law and Faraday’s law. It might be more appropriate
to call the penultimate, Maxwell’s equation, because Ampere’s law as
it was originally formulated was

VxH= 477-[] (138)

Maxwell added the term proportional to the rate of change of the
electric field. If one takes the divergence of the complete Ampere’s
law one obtains,

4 1 oD
V-(VXH):TNV~]+EV~§ (139)

The left-hand side vanishes because the divergence of the curl van-
ishes, on the right hand side one obtains,
0:477{V-J+4Tn% (140)

where we have used the first of Maxwell’s equations to simply the
result and find that the Maxwell’s addition makes the full set of
equations consistent with charge conservation.

Let’s calculate the work that the field will do on a bunch of charges
per unit volume,

1 oD
]-E:M[C(VXH)-E—E~8J (141)

We have the following vector identity (the triple product)
E-(VxH)=H-(VXE)-V-(ExH) (142)
Substituting in the earlier result and using Faraday’s law yields,

1 9B _ 9D
:M{_H._E.—CV-(EXH)] (143)

J-E ot ot

Let’s assume that € and p are constant and get
10 c
J-E+ o [H-B+E-D|+V- (E

This is Poynting’s theorem. We can identify the work performed on

E x H) -0 (144)

the charges, the change in the field energy per unit volume and the
flux of field energy (S) as follows,

c
Utiels = g H-B+E-D] and §=-ExH (145)

8 |



Waves
Let’s look at Maxwell’s equations in a vacuum,

V-E=0 V-B=0
10B 10E

Let’s take the curl of the third equation and combine it with the
fourth to get

1 0’E
Vx(VxE)=-5=7 (147)
We have the identity that
V x (VxE)=V(V-E)— V2. (148)

The first term on the right-hand side vanishes so we get the final

wave equation,
1 0’E
2
V<E 292 = 0 (149)

and a similar equation for the magnetic field.
We write a general solution to the wave equation as a sum of har-
monically varying waves such as

E=% (51 Eoei(k'r*“’t)) and B=% (ﬁzBoei(k'r*“’tU (150)

Application of Maxwell’s equations to the above solutions shows

V-E=ik-E=0s04; Lk (151)
V-B=ik-B=0soa Lk (152)

10B . W R A
VxE—f—Ea:zkxE—z?B:OsoalJ_az (153)
VxB—%%—f:'ka—O—i%E:Osow:kcandEozBo. (154)

We would like to calculate the time-averaged energy density and
energy flux assoicated with the wave. In general Eg and By are com-
plex quantities. First let’s look at the Poynting vector

1 /P ¢

(S) = 7)o EEXBdt (155)
= Cf(/dlz‘(%Eocoswt—%Eosinwt) X
47tP Jo
(R By cos wt — IBy sin wt) (156)

_ ck P 2 KRB ain2
= W/Odt (?RE()?RBOCOS wt + SE(pS By sin a)t) (157)

ck ck

= 3 (%EQ%BQ + %Eo%Bo) = Q%ESBO (158)
ck ck

= 3x EO|2 = %‘BOF (159)
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The time-averaged energy density is

1 . w1 2 1 2
(U) = 7R (EoEg + BoBg) = o—|Eof* = o—|Bo (160)

Because the electric and magnetic field have the same behaviour we
only have to describe one of the fields to determine the properties of
the wave. It is customary to focus on the electric field.

The Spectrum

A general electromagnetic wave can be expressed as a sum of the
Fourier components described in the previous section. We have been
characterizing the energy in the radiation field with the quantity I,
the intensity per unit frequency interval. It would be nice to find an
relationship between the electric field as a function of time and the
intensity.

The first step in obtaining the spectrum is to take a Fourier trans-
form of the electric field of the wave

E(w) ! /oo E(t)e™tdt. (161)

" 271 )

The inverse of the this is

A

E(t) = /_0; E(w)e “tdw. (162)

Because E(t) is real find that E(—w) = E*(w) so we don’t have to
keep track of the negative frequencies.
To study the energy carried by the wave we look at the Poynting

vector W
_
didA ~ an- ) (163)
The total energy per unit area in the wave is
aw c [®
= /70015 (t)dt (164)

Parseval’s theorem (see § for a proof) for Fourier transforms states
that

/: ER(H)dt = 20 /j; IE(w) Pdew. (165)
Additionally, because E(—w) = £*(w) we have
/_ °:o E2(+)dt — 47t /O “ 1B(w)Pdw. (166)
and we can write e o
T4 = C/o |E(w)Pdw. (167)

And we obtain that
(168)



The intensity is related to the energy per unit time. If the pulse re-

peats on a time scale T or the wave changes only on timescales T

much longer than 1/w we may define

Table 1 gives a few Fourier transforms of common functions. Al-

aw

dAdwdt

£
T

|E(w)[?

(169)

though the last one seems rather arcane it has an important property,

/ sin [T(w — w')]

dw =1

T(w — w')

that lets us define the pair

E(t) _ efiw’t
Elw) = d(w—w')
where
[ 8w =) f(@)de = f(e')
E(t) E(w)
to )
w
/\ ni};z (1 —cos 42) elwto
2
exp (_ (t;;g) ) el(vto exp ( wzg-z) %
el %aszz
exp (—iw't) for [t| < T Siﬂ?(i“i;‘,‘;/)]
Polarization

(170)

(171)
(172)

(173)

For a general electromagnetic wave with wavenumber k we can de-

fine a basis for the polarization of the wave: e and e; such that

€1 X €3 || k. For example a wave can be linearly polarized with its

electric field always pointing along €1 or along €. A general solution

is a linear combination of these two waves with complex coefficients.

ASTROPHYSICAL PROCESSES

Table 1: Some Useful Fourier trans-
forms
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To be more specific we have

El — elElel‘k-Xfl‘wt
E, = EZEzeikx—iwt
k x E]
B =
] k

and a general wave would be E = E; 4 E;. Because the coefficients
E; and E; are complex we can introduce a phase difference between
the two perpendicular components. If this phase difference is zero,
then the wave is linearly polarized (left panel of Fig. 3) with the po-
larization vector making an angle § = tan 1 (Ep/Ep) with €7 and a

magnitude of E = /E? + E3

E Figure 3: Electric field of linearly (left)
ang%lliptically (right) polarized waves

€2

€1

ay

If the phase difference is nonzero, one in genral has an elliptically
polarized wave as shown in the right panel of Fig. 3. The orientation
of the ellipse is characterized by the orientation, tile or azimuth angle
¢ which is the angle between the semimajor axis of the ellipse and €.
The shape of the ellipse is measured by the ellipticity, €, the ratio
of the lengths of the major to minor axes. We can also define an
ellipticity angle x = cot™!e. The sign of x is positive for a right-
hand circularly polarized wave — in this case the electric field would
proceed anti-clockwise in Fig. 3.

One could have defined an alternative representation based on the
circular polarizations

€+ = \2 (e1 Liey). (174)

Because €+ is now complex one has to be a bit careful about its or-
thogonality properties. Specifically,
el e =0l k=0l e —1. (175)

Often it is convenient to use this circular polarization basis rather
than the linear polarization basis above (for example, waves travelling
through plasma).



Most astronomical detectors blueward of the microwave measure
not the electric field directly but rather the energy delivered by the
wave. It is possible to recover this polarization information through
intensity measurements.

Generally one inserts a filter which collapses the incoming wave
onto one of the polarization states and one measures the resulting
intensity. For example, the intensity measured through a polarizing
filter aligned along the 1—direction is |e; - E|?. Let be more explicit
and take two examples,

1 )
7

Ei = mé E; = aye'

E,L = a+ei‘s+, E_ =a_e°.

The first wave is given in the linear basis and the second is given
in the circular basis. One typically makes a series of intensity mea-
surements through filters and quarter wave plates with different

orientations and combines the resulting intensities to form the Stokes
parameters, I, Q,U and V or sg,s1,52 and s3. The first parameter mea-

sures the total intensity of the wave, the sum of the intensities of the
two linearly polarized measurements.

Stokes Parameters
In the linear polarization basis we have

= so=le1 E[> +|ez-E[* = af + a3
= s1=ler E’ ~|ex B> =af — o
sp =2R[(e1-E)*(e2-E)| = 2ayap cos (6, — 61)

= 853 = 28 [(61 . E)*(ez . E)] = 2ﬂ1ﬂ2 sin ((52 — (51)

< S O ~
|

and for the circular basis we have

= so=le; EP+le_ -Ef* =d% +a%
s1=2R[(e+-E) (e~ -E)] =2a1a_cos (6— — ;)
sp =23 [(e4 -E)"(e— -E)] =2aja_sin(6_ —J;)

= s3=les-E—le- -Bf =a} —a?

< SO0 ~

The fractional polarization is given by

2 2 2
Qo ver+ur+Vve

i (176)
and the fractional linear polarization
/QZ + Uz
I = ——. (177)

I
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The four Stokes parameters satisfy the following relationship for a
truly monochromatic wave

s§ = s7 + 53 + s3. (178)

Poincaré Sphere

This result shows that the Stoke’s parameters live on a sphere of ra-
dius r < sy where the extent of polarization IT = r/sy. This sphere of
polarization is known as the Poincaré sphere (Fig. 4) and the location
of the polarization on the sphere is related to the orientation of the
polarization ellipse in Fig. 3. In particular we have

s1 = Q=1IIIcos2ycos2x
s = U =1IIIsin2ycos2x
s3 = V =IIIsin2y

which relates Stoke’s parameters to the orientation and shape of the
polarization ellipse. The two angles defined in Fig. 3 related to the
latitude (2x) and longitude (2¢) of the polarization vector (s1,5s2,53)
on the Poincaré sphere.

AN |
RN

A\

X

Var RN
VN
7

-

>\

ay

S

—X
7>

—

7
3
a—

N
%

WA
v 1"7 7 W,
S

—

7
AL
LT
1A
N,
Nara
SASTA

& -

—_—

Z X
)

N i

5
//’;)
7

/

A\

An interesting and useful relationship is that the Stokes param-
eters are additive for waves whose phases are not correlated. Let’s
take two waves of frequencies w, and wy, and calculate the value of
the first Stokes parameter as an example. We have

I = so=le1-Ef+lez-E]? (179)

Figure 4: The Poincaré sphere
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1 At
= 2 [ e m e B e B P e B

2[(e1-Eq) (€1-Ep) + (€2 Ea) (€2 Ep)] cos [(wa — wy) iﬂl}sl)

(@) {1 /50,450, (AwAt)fl} AwAt > 1

(182)
O [\/S0a50p (AwAt)]  AwAt < 1

= 804 +tSop+ {

where Aw = w,; — wy. For example, if we look at a star over a wide
range of frequencies (the definition of wide is AwAt >> 1), the phase
of waves at one end of the frequency range will not correlate with
waves at the other end.
When we measure the Stokes parameters in practice we measure
for example
s2 = 2 (ajap cos (62 — d1)) . (183)

Although cos? x +sin®x = 1,0 < {(cosx)* + (sinx)? < 1, so for a
quasimonochromatic wave we have

s3> 52 452 +53. (184)

Because the Stokes parameters are additive and measure the energy
content of the wave, they are a natural basis to calculate the radiative
transfer of polarized radiation.

Electromagnetic Potentials

Looking at the structure of Maxwell’s equations, we can see that we
can express the magnetic field as the curl of another field, the vector
potential,

V-B=V-(VxA)=0 (185)

where the second equality is an identity if B = V x A.
Let’s substitute this into the other homogenous Maxwell equation,

VxE+%%VxA =0 (186)
VX(E+(1:%?) = 0 (187)

1 10A
_V¢ZE+E§ (188)

then the second homogeneous Maxwell equation is satisfied as well.

ASTROPHYSICAL PROCESSES
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Let’s recap
B = VxA (189)
10A
E = —V¢- Py (190)
(191)

The expression of the fields in terms of the vector and scalar potential
guarantees that two out of four of Maxwell’s equations are satisfied.
Let’s substitute our results into the remaining Maxwell’s equations,

V-E = 4np (192)

10A
V- (V c8t> = 4mp (193)
V21 12v.A = an (194)
Pt = P 94

and the second inhomogeneous equation gives

1 0E 47
VXB*zg = TJ (195)

10 10A 47

10 10A 47

. — 2 _— _— — JE—
V(V-A) VA+c8t (V(P—i—cat) cJ (197)

Now let’s rearrange the last equation a bit more,

19 1 9%A 47

— . 24 - =2 _ -t - 2=
V(V-A)+ VA -2 (V) - 5 Ty ao®)
1 9%A 19¢ 47
2 S — . _ e P —
VIA- 598 V(V A+cat) ~J (199
Let’s look at the last of the charge density equations equations some
more,
10
2 [ . — —
Vg + : atV A 4mp (200)

10% 10 (V.A+1a¢>

2, 99 19 2 _
¢ c? ot2 + c ot c ot 4mp (201)

Although it looks like that the equation is a bit more complicated
than before, it now has the precise form of the equation with the
current.

Wouldn't life be simpler if the quantity in the parenthesis in both
equations vanished? Guess what? We can choose for it to vanish
by making a good choice of gauge. Only the electric and magnetic
fields are measurable so we can make any change to the potentials A
and ¢ that we want as long at E and B remain unchanged. Because
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B = V x A we can add the gradient of any function ¢ to A without
changing B (the curl of a gradient of a function is zero).
However, if we add a gradient of function to A the value of E is

affected,
10

E— E— EEVI,U. (202)
To fix this we also have to change the scalar potential ¢ at the same
time by subtracting 1/c(dy/dt) from ¢. Therefore, we find that the
equations of electromagnetism remain unchanged if one replaces
19y

A—A+4+VyY and ¢ — TS (203)

This is the gauge transformation and it means that we in general
have the freedom to set a particular scalar constraint on the poten-
tials.

Lorenz Gauge

In particular we would like to set

lop
V-A—I—EE—O (204)

This is equivalent to finding a function 1 that satisfies

1 0%y
2y 2 ¥
v c2 ot?

109 _

and adding it to A to get A’. It turns out that this is possible so we
are free to use the following equations for the potentials,

1 0%¢ 1 0°A 47
2, 1079 24 L OA AT
232 = 4mtp, and V-A 252 ¢ J. (206)

This is the Lorenz gauge (which happens to be Lorentz invariant).

Green’s Function

Both of the equations have the same form. Let’s look at the equation
for the electric field

~55p = 4 (207)

and write ¢ and p in terms of their Fourier transforms in time, e.g.

p(r,t) = /oo pr,w)e”wtdt (208)

—00

so the equation for the potential now looks like

2
V2p(r,w) + %@(r,w} = —47p(r,!). (209)



38 JEREMY HEYL

Now let’s look for a particular solution G(r,w) for ¢ where p van-
ishes everywhere but the origin

V26 (r,w) + CLzé(r,w) = —476(r). (210)

2
The function G(r, w) is the Green’s function of the equation (Eq. 209).
It is a useful concept because Maxwell’s equations are linear, so the
principle of superposition applies. The electromagnetic fields for two
charges is simply the sum of the fields of each charge on its own.
Because the right-hand side only depends on the magnitude of r,
the Green’s function must be spherically symmetric, so
102 . 4 w? 4
w3 [rG(r,w)] + C—ZG(r,w) = —476(r) (211)
which is nearly the equation for the potential for a point change.
We can start with the solution 1/ and add an exponential term to
handle the second term in the equation; let’s substitute the following

ansatz
. eikr
G(V,(U) = 7 (212)
which yields
eikr w2 eikr

which trivially solves the equation everywhere but the origin if k =
fw/c. Because Eq. 211 is a second-order differential equation we get

two solutions,
ei:l:rw /c

G (r,w) =

. (214)

and the complete solution is a linear combination of the two. Now
because we know the solution for source at a point we can write the
solution for a distribution of charge

p(r', w) (215)

g[A)i(r w) = /.dSr/eXp (fiw/clr— r/|/C)

r—r|

and write out the potential as a function of time

ot = [ draw™P [Wffrﬁ Ol w). (a6)

We can perform the integral over time because it is the same as
Eq. (208) but with t replaced by t F |r — /| /¢, so we have

¢E(r,t) = /d3r’p (r,t:F r— r’|> L (217)

c lr—r|

The solution for the vector potential is similar. We have two
choices (or a linear combination). The potential here can depend
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on the locations of charges along the past and the future light cones.
Although the latter choice appears to violate causality, it all really
depends on what questions that you would like to ask. For example,
if you wanted to know given the distribution of fields here and now,
what would be the distribution of charges to absorbed the radiation
in the future, then the advanced potential (with the plus sign after
the time coordinate). Here we are generally interested in the radia-
tion that a configuration of charges emit, so we shall use the retarded

potentials,
’ [r—1'|
_ 1 3 /J (r,t— ¢ )
A(r,t) = E/d r T (218)
[r—r|
p(r, t—

4)(1',t) = /d31,/ ( ‘r_r/’ ) (219)

Further Reading

To learn more about faint x-ray structure in the Crab nebula, consult

* Seward, F. D., Tucker, W. H. & Fesen, R. A. 2006, “Faint X-Ray
Structure in the Crab Pulsar Wind Nebula,” Ap], 652, 1277

and

* Heyl, J. S. & Shaviv, N. J. 2000, “Polarization evolution in strong
magnetic fields,” MNRAS, 311, 555

use the Poincaré sphere extensively to study how the polarization
of emission from the surface of the Crab pulsar changes as it travels
through the star’s magnetic field.

The general development of Maxwell’s equations and the polariza-
tion of radiation are examined in Chapter 6 and §§ 7.1-7.2 of

e Jackson, ]. D., Classical Electrodynamics.

Problems

1. Coulomb’s Law

Derive Coulomb’s law from Maxwell’s Equations.

2. Ohm'’s Law and Absoption:

In certain cases the process of aborption of radiation can be treated
by means of the macroscopic Maxwell equations. For example,
suppose we have aconducting medium so that the current density
j is related to the electric field E by Ohm’s law: J] = ¢E where ¢ is
the conductivity (cgs unit = sec™!). Investigate the propagation of
electromagnetic waves in such a medium and show that:

39
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(a) The wave vector k is complex

where m is the complex index of refraction with

m? = pe <1 n 47'(1(7)

we

(b) The waves are attenuated as they propagate, corresponding to
an absorption coefficient.

Figure 5: A Chandra image of the out-
skirts of the Crab pulsar wind nebula.
Credit: NASA/CXC/SAO/F.Seward et
al

2 arcmin

3. The Edge of the Crab

Fig. 5 shows the x-ray emission of the Crab pulsar wind nebula at
a distance of 2 kpc. The x-ray emitting gas is contained by mag-
netic fields causing the x-ray emission regions to end sharply. We
can relate the frequency of the emission to the energy of the elec-
trons and the strength of the magnetic field by

w= E )" ¢B (220)
A\ mec? ) mec

and assume that the electrons are relativistic so their inertial mass
is E/c?. Use the sharpness of the emission regions to determine
the energy of the electrons and the strength of the magnetic field.

4. Momentum and Angular Momentum:

This problem is meant to deduce the momentum and angular mo-
mentum properties of radiation and does not recesarily represent
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any real physical system of interest. Consider a charge Q in a vis-
cous medium where the viscous force is proportional to velocity:

Fvisc = _50

Suppose a circular polarized wave passes through the medium.
The equation of motion of the charge is
dv
m—— = Fisc + FLorentz

dt

We assume that the terms on the right dominate the inertial term
on the left, so that approximately

0=F vise T F Lorentz

Let the frequency of the wave be w and the strength of the electric
field be E.

(a) Show that to lowest order (neglecting the magnetic force) the
crage moves on a circle in a plane normal to the direction of
propagation of the wave with speed QE/B and with radius
QE/(Bw).

(b) Show that the power transmitted to the fliud by the wave is
QZ E2 / ,8

(c) By considering the small magnetic force acting on the particle
show that the momentum per unit time (force) given to the

fluid by the wave is in the direction of propagation and has the
magnitude Q*E?/(Bc)

(d) Show that the angular momentum per unit time (torque) given
to the fliud by the wave is in the direction of propagation and
has magnitude +Q?E?/(Bw0 where the + is for left and - is for
right circular polarization.

(e) Show that the absorption cross section of the charge is 471Q?/(Bc).

(f) If we regard the radiation to be composed of circular polarized
photons of energy E, = hv, show that these results imply that
the photon has momemtum p = h/A = E,/c and has angular
momemtum | = +# along the direction of propagation.

(g) Repeat this problem for a linearly polarized wave

. Maxwell’s equations before Maxwell:

Show that Maxwell’s equations before Maxwell, that is, without
the "displacement current" term, ¢! aa—[t), unacceptably constrained
the sources of the field and also did not permit the existence of

waves.

41
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Coulomb gauge Derive the equations describing the dynamics of
the electric and vector potentials in the Coulomb gauge

V-A=0

Look at the equation for the electric potential. What is the solution
to the electric potential given the charge density p? Why is this
called the Coulomb gauge?

How does the expression for the scalar potential in the Coulomb
gauge differ from that in the Lorenz gauge? What is strange about
it? Is it physical?

Now look at the equation for the vector potential. Show that the
LHS can be arranged to be the same as in the Lorenz gauge but
the RHS is not just the current but the current plus something else.

Show that the RHS can be expressed as

4
Tn (J - Jlong)

where

1 V'] 4
Jlong* _EV/ |X—X/|d X



Radiation from Moving Charges

We will start to look at how radiation gets produced, scattered and
absorbed at a microscopic level to derive quantities like j,, a, and oy,.

Retarded Potentials

We saw in the last section that in the Lorenz gauge the equations for
the vector and scalar potential are

., 19% 1A 4nm

2
—6—2?——47(;), and V A_ciﬁ__T]' (221)
which have the following solution
[r—r'|
1 J I‘/,i’ -
A(r, t) = C/d3r/(|r—r/|C) (222)
[r—r|
p (v, t— =
Pp(rt) = /d3r’( = r’|c ) (223)

An equivalent way of writing ¢(r,t) is

o(r,t) = / a3 / dt’pr(r_/’

and similarly for A

/
L)d(t’ Ctte—r|/0)  (224)

Let’s think about a single charge with charge g and position ry(t).
It can be characterized by

p(rt) = qé(r—ro(t)) and j(r,t) = qué(r—x(t)) (225
Let’s substitute this expression for p,
/o /
P(r,t) = /d3r//dt’lw5(t’—t+ lt—r'|/c) (226)
1
= atf —— 5 —t+ |r—ro(t)]|/c 22
0 [t gy el @)

It is easy to perform integrals over a J-function if the integral is over
the argument of the J-function, so we would like to perform the
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following change of variables

=t 4+ |t —ro(t')] (228)
c
yielding the Liénard-Wiechert potentials
. " 1 " Lﬂ
Pt = g et (229)
9
- 2
R<tret)K<tret) ( 30)
qu (tret)
A = 231
CR(tret)K(tret) ( 3 )
where
R(t) = [r—ro(t)] (232)
R(t,
fet = t— % (233)
at//
() = =7 (234)
Let’s look at the partial derivative now,
o 10R(t)
k() = 57 =1t (235)
and looking at R()
R(H)? =R(t) ‘R(t) (236)
SO
2R(t)R(t) = —2R(t) -u(t) NB: R =r—ry(t) (237)
" IR() u(t) 1
t)-u(t
k(t)=1-— RO 1-— En(t) -u(t). (238)
The Fields

We can use the potentials to determine the electric and magnetic
fields produced by the moving particle. Let us define

ﬂzg,sokzl—nji (239)

which yield the fields (see § 14.1 of Jackson)

E(rt) =g¢ [(n_iggz_ﬁz)]ret—kz [% X [(n—B) x B]Le$24o)

B(r,t) = [nxE(r,t)],- (241)

It is important to remember that all of the properties of the particle
are evaluated at the retarded time.



A few things to notice are that if the particle is not accelerating
the electric field points to the current not the retarded position of the
particle. This allows us to graphically depict the field for a particle
that is stopped suddenly.

The fields have two parts. The first part is proportional to 1/R?
and it is simply a generalization of the field for a stationary charge.
The second terms are proportional to 1/R. They are

_ 44[n ,
Ea(r,t) = +- [ﬁ X [(n—p) x /3” (242)
Braa(r,t) = [nxEng(r,t)]. (243)
We can calculate the Poynting vector of the radiation fields

2
— q 31 |2
_n47TCK6R2 ’I‘lX{(n—ﬁ)XﬁH (244)
Distribution in Frequency and Angle

To examine the spectrum of the radiation let us define examine the
Fourier transform of the electric field. We know (Eq. 168)

dw .

_ 2
o = clE(w)| (249)
where 1 oo
f _ iwt
E(w) = o /_OOE(t)e dt. (246)

in our case we are interested in the energy emitted per solid angle so

AW, dW

— r 2

and

RE(w) = Zircc ~ {;:13 x [(n—B) x B}]ret elwtdt, (248)

The intergrand is evaluated at the retarded time, t' + R(¢')/c = t, so
we can change the variable of integration from t to ' to yield

RE(@) = 51 [7 [ x [(n—p) x ]| e RODar. (agg)

If we assume that the observer is far away from where the accel-
eration occurs, the unit vector n can be taken to be constant and
R(t") = Rp —n-r(t'), yielding

RE(@) = 5 7[5  [(n— ) x ] 0. (aso)

27c J-o

As we did earlier (§ ), the total energy radiated per unit angle is

dw 7%

dQdw ~— 4m2c

/oo nx (0= B) X Bl ot nrt)/0 g (s

~  (1-B-n)*
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The expression can be simplied further by noticing that

nx [(n—pB)xf d [nx(nx
(n=p)xB] _ d nxnxp)] 52
(1—p-n) dt 1-B'n
and integrating Eq. 250 by parts to yield
dW _ quZ « iw(t'—nxg(t)/c) 74/ 2
doods = 4t || X (X B at (253)

Non-relativistic particles

Let’s assume that || < 1 and focus on a particular frequency v
so that # ~ uv. We can compare the “acceleration” fields to the
“velocity” field

q

Eiee = 2R [n x {n x a}] (254)
n
Evel = % (255)
S0
Eace & Ruv u B (256)
Eveg 2 2 cA 5

so for points in the “near zone”, R < A, the velocity field is stronger
than the acceleration field by a factor > c¢/u; but for points suffi-
ciently far into the “far zone”, R > A(c/u), the acceleration field
dominates.

Let’s derive Larmor’s formula for the radiated energy. Let use the
angle O to denote the angle between the vectors n and 1, so we have

u .
|Eacc| = |Bacc| = %@Sln@ (257)

Using the formula for the Poynting vector we have

2,2
_ S Cqu L0
S = n47rEacc 17 23 SN Q) (258)
The power radiated per unit solid angle is simply (S - n) R? or
dW - qZuZ .2
it~ SO (259)
Let’s integrate over all angles to get the power
P = T /sm 040 = 53 ./_1 (1 —u )d],t (260)
21/]2112

= 33 (261)



How about relativistic particles?

Let’s look at the Poynting vector again.

7 21 |2
S:nm|nx{(n—ﬁ)xﬁ}| (262)

where S - n is the energy per unit area per unit time detected at an
observation poiint at time ¢ of radiation emitted by the charge at time
t' =1—R(t')/c. Let’s calculate the energy radiated away from t' = T;
to ' = T, we would have

. /-th+[R(T2)/C] [S }dt /Tz [S ] dt dar’ (263)
= ‘n = R 2
Je=t 1 R(T) /4 JTy at’ 3
SO wWe have
dP(t/) o dt 2
aq - RS g =RIS ) (A=p-n) (264

When we include the Poynting vector expression we have

dP(t) _ ¢* [nx{(n—B)x B}’
aQ 47c (1—n-ﬁ)5

Let’s start by assuming the B is parallel to B, so B x B = 0. We get

(265)

dP(t')  q*u? sin? @
dQ) 4713 (1 — Beos ©)°

(266)

Let’s integrate the power over all angles,

2.2 1 2 2.2
o, g 1—nu _2q7u” 4
P_27r47rCZ /_1 (1—ﬁy)5dy_ 27 (267)

where
1 1

TR JArPUp (269

Let’s take a second look at the angular distribution of power for

small angles and B ~ 1.

dP(#) i 62
~ 6
e T L) A
~ q2u2 92
Ty (270)
L 8 5 (19)? (271)
T 1+ (19)2)°

Let’s repeat the calculation for circular motion, in which g L B. To
be definitive we have to specify two angles for our observer n. Let’s

ASTROPHYSICAL PROCESSES 47
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3 - Figure 6: Radiated power as a function
of angle and 76 for longitudinal mo-
tion. The left-hand panel shows from
inside out § = 0,0.2,0.4,0.6,0.8.

-1 0 1
0

take the velocity to be along the z-axis and the accelation along the z
axis, so O is the angle between n and the velocity and ¢ is the angle
between the projection of the vector n into the x — y-plane and the
acceleration (i.e. these are just ordinary spherical coordinates). We
obtain in general,

dP(t")  q*u? 1 i sin? @ cos? ¢
dQ  4ncd (1 — 310 21— 2 (272)
(1—Bcos®) 7% (1— Bcos®)

If we integrate this over all angles we get

2 ¢%u?
P(t') = 5%74 (273)

At first glance, the power from longitudinal motion seems much
larger that the circular motion, but it is important to compare the
power emitted for the same applied force (dp/dt).

For circular motions the applied force is ymii, yielding

2 dp\?
PcirC(t/) = gqucg, 72 (dl:) (274)

For longitudinal acceleration, the applied force is given by m~>u

2 g2 [dp\?

For a given applied force, the radiation due to the component per-
pendicular to the motion is much larger than the parallel component.
If the particles are ultrarelativistic it is appropriate to neglect the
parallel contribution completely.

Radiation from Systems of Particles

Let’s focus back on the radiation from a non-relativistic particle,
specifically a bunch of such particles. The electric field is linear so
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the total electric field of the ensemble is the sum of the particle’s
individual contributions,

B = 1 g < {mx )] (276)
1

This sum could get really cumbersome, especially if you have ~ 104
particles. You have to calculate the retarded position and keep track
of the velocity of each one. There is an easier way.

Let’s assume that the particles are confined to a region of size !
and we are really far from that region, R; > [ so R; =~ R where R is
the distance to the centre of the region and n; ~ n, a vector pointing
to the centre of the region.

For the above expression for the electric field to be valid, R/c must
be greater than any timescale (7 for the particles to change position
(i.e. we are in the “far” zone). Let’s also assume that ct > [ which
means that we can neglect the difference in retarded time between
particles at one end of the region and the other. Let’s make these
changes

1
Etot = ﬁ

n x {n X ZqilliH (277)

Let’s define the dipole moment of the ensemble

d =) qiro, (278)
i
which yields
Eiot = % [nx {nxd}] (279)
We also get ) )
% = 4?;3 sin?@® and P = é—(:i (280)

Let’s examine the spectrum of dipole radiation. To make things eas-
ier, let us assume that the dipole lies in a single direction and varies
in magnitude (imagine a negative charge moving up and down a
wire). In this case the electric field is parallel to d and we have

v\ SN O

Let’s define .
a(t) = / et d(w)dw (282)

so we have -
d(t) = —/ w?e " (w)dw (283)

1o 1

. o 94 ,

E(w) = —CZROw d(w)sin@® (284)

and the power per unit solid angle and frequency is

] w 2
di% - %w4|d(w)|2sin2® and W _ 8w

Jo = WWA(W)F (285)
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A Physical Aside: Multipole Radiation

It is possible to calculate the radiation field to higher order in L/ (cT).
This is necessary if the dipole moment vanishes, for example. We can
expand the exponential to yield
Aup(r) = e i 1 / (t) (—ikn-t')" &%/ (286)
¢ cr =hn! Jw
where k = w/cn = 0 gives the dipole radiation, n = 1 gives the
quadrupole radiation and so on.

Cherenkov Radiation

Figure 7: The propagation of electro-
magnetic waves from a source travelling
slower and faster than the speed of light
in the medium (c¢/+/€ in § ).

When a charge travels through a medium faster than the speed
of light in the medium (taken to be c¢/+/€ in this section), additional
complications arise. Fig. 7 illustrates how for v < c¢/+/€ each point
yields a unique retarded time denoted by the circles. On the other
hand ifv > ¢/ ﬁ the space is divided into two regions. In one out-
side the “Cherenkov cone” one cannot assign a retarded time to a
particular point and within one must assign two different times to
each point. On the cone one has a range of proper times. We can
translate our earlier results, for example Eq. 253, by making the fol-
lowing substitutions

c%%amdq%% (287)
yielding
s = qu;zecls/z [ nx(nx ppeeltnm®ee) gy s
Here we have uniform motion in a straight line r(#') = vt so
di% - qzi/z n < vf? % /_O:o gt (1= 27c) gy (289)
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The integral is a Dirac delta function, so we have

aw g*e'/2p*sin? 1/2 2
Tod0 =~ - 5(1—e€/“Bcosh) (290)
where 6 is measured relative to the velocity of the particle. The radia-
tion is only emitted at the angle

1
cosfOc = W (291)
In general the dielectric constant is a function of frequency and the
frequency dependence does not change the result of Eq. 290, so we
also find that the radiation is only emitted at frequencies where
Be'/?(w) > 1, or to put it another way at frequencies where the
charge exceeds the propagation speed of the radiation.

The total energy radiated according to Eq. 290 diverges; this sim-
ply results from our assumption that the charge travels through the
dielectric material forever and this assumption is easy to relax by re-
placing the infinite integral with one over a time 2T during which the
particle travels through the dielectric

i _el/2
w T eiwf/(lfl‘l-vel/z/c)dtl _ ﬂSln |:C(]T (1 € ,3C059 ]
2T m [wT (1—€/2Bcosb)]

(292)

Again the radiation is sharply peaked at the Cherenkov angle as long
as wT > 1 and we can integrate this result over all angles to yield the
total energy per frequency emitted as the charge travels through the

dielectric
aw  Pw  fw 1

where 2cST is the thickness of the dielectric region.

Thomson Scattering

Let’s imagine that an electromagnetic wave hits a charge particle
causing it to move according to the Lorentz force equation,

F = (Bume + = X Bue ) (204)

To simplify matters let’s assume that u < ¢ so we can neglect the
magnetic term because Eyave = Bwave SO We have.

. q
= —Ewave
u=_ (295)

Because the wave is accelerated, it radiates electromagnetic radiation
2
q

Eacc = m [l‘l X {n X Ewave}] (296)
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The radiated wave has the same frequency content as the incident
wave. The electric field of the radiated wave is in the plane contain-
ing Eyave and n.

Figure 8: Geometry for Thomson

2
©)
B

|
3 ) . scattering
N ! Ew,l
!
Ewa | 0
T E»w,2 k

By averaging over a period of the incident radiation we can derive
the time-averaged power radiated by the charge
AP q*E} 7*E2

)
2 pP=
0~ 8mm2d o © and 3m?c3

(297)

where @ is the angle between the line of sight and the electric field
of the incident radiation. The incident radiation carries a flux of
(S) = (c/87m)E2, so we can define the differential cross section

dr  dP ,_ _ Lo :
0= 10 (S) 1 quc4 sin? @ = r(z, sin’ © (298)

where g = 2.82 x 10713 cm for an electron, the classical electron
radius.
The total cross section is

8
o= ?nré = o = 0.665 x 1072* cm? for an electron (299)

So far we have examined the scattering of polarized radiation. It
is straightforward to think about scattering of unpolarized radia-
tion by taking the incoming beam to be a sum of two beams whose
polarization differs by 77/2.

{d(;(((;)) . daggz)]

do
0

(300)

1
unpol 2
1 1
Er% (1 + sin? G)) = Er% (1 + cos? 9) . (301)
The first term in the expression corresponds to light polarized in the
plane containing E;,; and n and the second term traces light polar-
ized in the plane containing E; » and n. They are two orthogonal
polarizations. More energy is scattered into the E;, ; — n plane than
in the other in the ratio of 1 : cos?6, so the scattered radiation is
polarized with
_ 1—cos?6

~ 1+cos?6 (302)
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Radiation Reaction

We have found that when a charge is accelerated a certain power is
radiated away, so to accelerate the particle we must provide some
extra energy to work against a “radiation reaction” force,

29212
3c3

—Frag-u = (303)

To make sense of this equation, let’s consider integrate the power
over a period of time

ta 292 2 [ ..
_/t1 Fmd'udt:@/t1 u~udt:g [u-um—/tl u'udt] (304)

We can drop the term from the endpoints if for example the accelera-
tion vanishes at t = t; and t = f, or if the acceleration and velocity of
the particle are the same at t = t; and t = t,. We can identify,

2 2

Frg = 3?(1 = mTi (305)

where T = 2ry/(3c¢).

Radiation from Harmonically Bound Particles

We are going to take the results from the previous section to study
particles that are harmonically bound, so their motion satisfies the
following equation,

—TX + ¥+ wix =0 (306)

where the first term contains the radiation reaction. Let’s also assume
that the radiation reaction is only a small perturbation on the motion
s0 X ~ —wpx and we have

X+ w%n‘c + w(z)x =0. (307)

Let’s solve this by assuming that x(t) = Ae*. Substituting and
dividing by the exponential yields the characteristic equation

0+ wita + wf =0 (308)

and the solutions

1
a = Fiwgy/1 — wit? — Ew%r. (309)

To lowest order we can take the square root to be one and we have
the solution

2 2
2 2q°wy;

—TIt/2 —
coswot where I' = wjiT = 10

x(t) = xpe
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The Fourier transform of this function is

A(t)_xo{ 1 + 1
M T2 =i (wrwo)  T/2—i(w—wy)

(311)

If we focus on positive frequencies, the first term is small so we can
approximate the power spectrum of the motion by

512 X0 )2 1
2= (—= . 12
= (32) et (12)
and the power radiated per unit frequency is
AW 8mw* . 8wt ¢7x§ 1
5 .= 3 ‘d(w)lz = 3 1 02 > (313)
dw 3c 33 (47)? (w — wp)? + (T/2)

1 r 1
“k 2> —
<z Y0 ) on (w—wp)?+ (T/2)* G14)

The classical line width dw = T’ is a universal constant for electronic
oscillators if expressed as a wavelength
A Aw o 22%wi A 4Ame? 4w

= — = = —rp=12x10"1
A w 3me3 wg  3mc? 30 cm (315)

Driven Harmonic Oscillator

Let’s imagine that our harmonic oscillator is driven by incoming
electromagnetic wave. Using the assumptions from the section on
scattering and the radiation reaction we have

mi = —mwix + mtx + qEy cos wt. (316)

Let’s divide by the mass and take use the exponential for the cosine

Ey ;
i —TX + wix = qm—oel“’t (317)
and try a solution of the form
x = xge* (318)
which gives
2 i 4 2 — 9E0
X0 ( w”+HIiTw +w0) = (319)
SO E .
e
X = -0 > (320)

m w?— wi —itw]

It is convenient to express

xo = |xole® (321)
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where

3 -1/2
w-T eEO 2 2 2 6.2
tand = —— and |xy| = — (w —w) + wiT . 22
wz—w% ol m [ 0 0 (322)

Let’s use the dipole formula to calculate the radiated power

_ ?lxol2wt  qiE2 W

P =
W (@ )+ (o)

(323)

Let’s divide by the Poynting vector (S) = (c¢/87)E3 to get the scatter-
ing cross-section

S

o(w) =or wz 5 (324)
(@? = @)™ + (wfT)

The scattering cross-section has several interesting regimes

* w> wy o(w)—or

4
* w< wy o(w)—or (%)
* w = wy: In this regime it is convenient to write

w® — w§ = (w — wp)(w + wp) ~ 2wo(w — wp) (325)

and take w = wy elsewhere in the cross-section

7'[0’TL 1
2T 27 (w — wy)? + (T /2)?

o(w) ~ (326)

Near the resonance the cross-section has the same profile at the
spontaneous emission.

Further Reading

To learn more about radiation from moving charges, consult Chapter
14 of

e Jackson, ]. D., Classical Electrodynamics.

Problems

1. Constant Velocity Charge
Show that if charge is not accelerating, the electric field vector
points to the current (not the retarded) position of the charge.
2. Dipoles:

Two oscillating dipole moments (radio antennas) d; and d; are ori-
ented in the vertical direction and are a horizonal distance L apart.
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They oscillate in phase at the same frequency w. Consider radi-
ation at an angle 6 with repect to the vertical and in the vertical
plane containing the two dipoles.

(a) Show that

dp 4sin? 0
o WS:Z; (d% + 2dqdp cosd + d%) ,
where
wLsin®
5 E f.

(b) Thus show directly that when L < A, the radiation is the
same as from a single oscillating dipole of amplitude d; + d5.

. Cloud:

An optically thin cloud surrounding a luminous object is estimate

to be 1 pc in radius and to consist of ionized plasma. Assume that
electron scattering is the only important extinction mechanism and
that the luminous object emits unpolarized radiation.

(a) If the cloud is unresolved (angular size smaller than the an-
gular resolution of the detector), what is the net polarization
observeed?

(b) If the cloud is resolved, what is the polarization direction of
the observed radiation as a function of position on the sky?
Assume only a single scattering occurs.

(c) If the central object is clear seen, what is an upper bound for
the electron density of the cloud, assuming that the cloud is
homogeneous?

. Synchrotron Cooling;:

A particle of mass m, charge g, moves in a plane perpendicular to
a uniform, static, magnetic field B.

(a) Calculate the total energy radiated per unit time, expressing
it in terms of the constants already defined and the ratio v =
1/+/1 — B? of the particle’s total energy to its rest energy. You
can assume that the particle is ultrarelativistic.

(b) If at time t = 0 the particle has a total energy Ey = Yomc?,
show that it will have energy E = ymc? < Ey at a time ¢, where

3m3c5(1 1>
t ——— (= — — ).
2¢*B2 \v 70

A particle of mass m and charge g moves in a circle due to a force

. Classical HI:

2
F = —f‘Z—z. You may assume that the particle always moves non-
relativistically.
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(a) What is the acceleration of the particle as a function of r?

(b) What is the total energy of the particle as a function of r? The
potential energy is given by —g?/r.

(c) What is the power radiated as a function of r?

(d) Using the fact the P = —dE/dt and the answer to (b), find
dr/dt.

(e) Assuming that the particle starts with r = r; at t = 0, find the
value of t where r = 0.

(f) Let’s assume that g = ¢, the charge of the electron, and m = m,,
the mass of the electron. Write your answer in (d) in terms of ;,
1o (the classical electron radius) and c.

(g) What is the time if r; = 0.5A (for hydrogen)?
(h) Compare this to the lifetime of a hydrogen atom.

. The Eddington Luminosity:

There is a natural limit to the luminosity a gravitationally bound
object can emit. At this limit the inward gravitational force on a
piece of material is balanced by the outgoing radiation pressure.
Although this limiting luminosity, the Eddington luminosity, can
be evaded in various ways, it can provide a useful (if not truly
firm) estimate of the minimum mass of a particular source of
radiation.

(a) Consider ionized hydrogen gas. Each electron-proton pair has
a mass more or less equal to the mass of the proton (m,) and a
cross section to radiation equal to the Thompson cross-section
(o7).

(b) The radiation pressure is given by outgoing radiation flux over
the speed of light.

(c) Equate the outgoing force due to radiation on the pair with the
inward force of gravity on the pair.

(d) Solve for the luminosity as a function of mass.

033

The mass of the sun is 2 x 10°°g. What is the Eddington luminos-

ity of the sun?

. The Blue Pool

Skectch the spectrum of light emitted by an electron with a total
energy of 1 MeV, 3 MeV and 10 MeV travelling through water.
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Special Relativity

Back to Maxwell’s Equations

Earlier we looked at Maxwell’s equations in a vacuum,

V-E=0 V-B=0

VXE:—Eg VXH:+C31‘ (327)

and found that they have wave solutions,

VE-S5-—5 =0 (328)

and a similar equation for the magnetic field. The waves travel at a
velocity ¢, which turns out to be the speed of light. The speed of light
had been known approximately since the 1600’s (does anyone know
how?).

Maxwell’s and his contemporaries spoke of light travelling through
some medium known as the aether. Michelson and Morley attempted
to measure the motion of the Earth through the aether, but failed.

Looking at the Michelson-Morley experiment closely shows what
is happening. Lorentz proposed that to understand the null result
of the experiment objects moving through the aether contract by
7~1 = /1 —102/c2 where v is the Lorentz factor.

Einstein’s insight was that if the speed of light was the same for
everyone moving uniformly, one would get the apparent “Lorentz”
contraction without needing the aether through which light propa-
gates or for the aether to contract objects. The aether was originally
proposed by Aristotle and experiments agreed with it for about 2,200
years, so throwing it away was a big deal.

Lorentz Transformations

Let’s imagine two people moving at a velocity v relative to each other
in the x-direction. Let’s also assume that their coordinate systems
coincide at t = 0, and that one emits a light pulse at t = t' = 0 from
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x = x’ = 0. After a time has elapsed the light has reached positions
that satisfy,

Py 22 -2 =0and X2 +y? + 27 - 32 = 0. (329)

We can satisfy these equations if

o= y(x—ot) (330)
vy =y (331)
7 = z (332)
= ’r(tfc%X) (333)

and the following inverse relations

x=7q("+ot'),t=1 (t’ + C%x’) and the other two equations. (334)

Length Contraction

Let’s look at the results with the aether again. If we have a rod of
length Ly in the primed frame what it is length in the unprimed
frame.

Lo =x; —x; = 7(xa = x1) = L. (335)
We have define the length to be the extent of an object measured at
a particular time. Notices that someone in the primed frame would
claim that the person measured the position of one end of the stick at
a different time from the other.

Adding velocities

Let’s do a final example. Someone in the primed frame throws a
ball in the x’-direction with velocity u} from x’ = 0 at # = 0, what
velocity will someone measure in the unprimed frame. After a time
t' the ball will be at x’ = u/t'. Let’s use the inverse transformation to
calculate its coordinates in the unprimed frame,

o 1 / o / [
x = y(uyt' +ot'),t = (t + C—zuxt ) . (336)
The velocity uy in the unprimed frame is

x (Ut +ot) u'+v
”x = — = = (337)
t 'y(t’+c%t’u;) 1+ vul./c?

If the particle had velocity components in the y’ or z’ directions the
corresponding components in the unprimed frame are
y_ o) Hy

Uy == = = (338)
Yot 7(t'+c%t/u;) v(1+ovu/c?)
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and similarly for the z-direction.
The apparent direction of the particle is different in the two

frames,
u uy u' sin 6’
tanf = L = LA .
an uy y(uh+o) y(u'cosd +v) (339)

This is the aberration equation. Let’s for an example take u’ = ¢ and
6" = /2. We could imagine that this is the emission from a dipole
moving at a velocity v. We get

c 1
tanf = — or sinf = — (340)
o 7 34

Doppler Effect

We have a radio transmitter in the primed frame radiating at a fre-
quency w’. According to the time dilation, in the unprimed frame
it oscillates more slowly at a time inverval At = 277y /w.. The time
between the arrival for two crests of the wave in the unprimed frame
is given by,
d v

Mt =At—% = At (172C059). (341)

SO

27T o'

w:m:'y(l—%cos@ (342)

Four-Vectors

We have found many strange properties of special relativity in a
rather ad hoc manner. All of these properties resulted from the fact
that

2= -2t = PP yP 422 (343)

is the same for all observers travelling uniformly relative to each
other. In three dimensions we can think about vectors whose length
x? + y* + 22 is invariant with respect to rotations. Once we establish
that a certain quantity is a vector we can use the transformation
properties of the vectors under rotation to determine what its value is
in any other frame.

Similarly in relativity, it is convenient to define something called a
four-vector whose components transform between rotated frames and
frames moving at different velocities such that the equation above
holds. A four vector is simply

=

= (344)
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and
2= Y Y uxtxt = gt = 2ixy, (345)
u=0v=0
where
-1 0 00
1 00
N =M = 00 1 0 and x, = [~ct x y z]. (346)
0 0 01

This tensor 77, defines the metric for flat spacetime. It is called the
metric because you need it to convert various four vectors (and other
objects tensors) into scalars that we can measure. We have selected
the particular convention that time-time component is negative (like
in Misner, Thorne and Wheeler). Jackson use the opposite conven-
tion. If the index is upstairs the vector is contravariant and if it is
downstairs it is convariant.

Now we can write the transformation between two frames very

concisely
xt = Al XY (347)
where -
v =By 00
e B (348)
0 0 01

This matrix looks remarkably similar to a rotation matrix. For exam-

ple,

cosf —sinf 0 O
sin 6 cosf 0 O
A =
0 010 (349)
0 0 0 1

This is no coincidence. A boost (shift between frames with two differ-
ent velocities) is like a rotation in spacetime. However, we have in the
rotation case we have

cos?f +sin?6 =1 (350)

while in the boost case we have
Y= () =701-p)=1 (351)

Sometimes people define the rapidity ¢ such that v = cosh(. The
nice thing about the rapidity is that like the angle 6 it is additive for
successive boosts.

What about the transformation of the covariant vector?

% = xl'x, = x"x = AL AL x, (352)



which tells us that
ASAL = 5 (353)
so the covariant vector transforms using the inverse matrix.
Let’s try to find some physically meaningful four-vectors. We
know that a displacement is a four-vector. Let’s try to find a four-
vector related to the velocity of a particle.

dxt
B T
ut=— (354)

The numerator is a displacement that transforms as a four-vector. For
the left-hand side also to be a four-vector the denominator must be
the same in all frames (a Lorentz scalar). The only one is dT which
we defined earlier. This is the time measured by someone moving
with the particle. We have

u C

U'=vy, | 5 | = [ ] (355)
uy u
Uz

What this means is that for each second measured by someone mov-
ing with the particle, -y times one second elapses for us and the parti-
cle travels u times one second.

What is the magnitude of UH?

Uty = = (v = (ruw)’ = =94 (1-B) = = (356)

If a particle is at rest its four-velocity is given by U? = ¢ and U’ = 0.

In non-relativistic mechanics, we define the momentum to be the
mass times the velocity, similarly we can define the four-momentum
to p#* = mUV. Let’s look at the properties of this vector in more
detail. Its components are

c

u mc
pl=um | =] T (357)
uy Y
Uz
Let’s expand the first component to see what it is
2\ 2 1 2
pr = yumc= <1_c2> mczmc%—im? (358)
_ mc*+KE E (350)
= c = 359

(360)
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If we calculate p#p, we find the relativistic relationship between
energy and momentum
2 E?
Plow = —(me)"=p-p—— (361)

E = \/c2p?+ m2c* (362)

Another important four-vector shows up in the equation for the
propagation of an electromagnetic wave. The electric and magnetic
fields of the wave are proportional to cos(k - x — wt). If both fields
vanish at a point and time in spacetime, all observers should agree
on this regardless of their motion so

k-x—wt = k,x¥ (363)

is a scalar. Because x* is a four-vector,

_ w/c
k"—[ K 1 (364)

must be one as well. This leads to a quick way to derive the redshift
formula. The person observing a wave finds

—w' = k#u; =—7(w-k-u)=—yw (1 - %cos 9) (365)

Tensors

We have essentially stumbled upon a few nice four-vectors, but there
is a more systematic way of dealing with four-vectors, scalars and
other quantities like the transformation matrix A’,. All of these ob-
jects are examples of tensors.
We can work out how tensors transform by looking at a few exam-
ples. The quantity
T" = A¥BY (366)

is a tensor. Let’s use the Lorentz matrix to transform to a new frame
T = A"B'P = A%, AMAF,BY = A% AP, T, (367)

We can find similar results for mixed tensors and covariant tensors.
Right now, we can build a contravariant vector by taking a set
of coordinates x’ for a event in spacetime and we can construct a
covariant vector by applying the metric 7, to lower the index of the
vector. How else can we make a covariant vector?
Let’s say there is a scalar field defined over all spacetime. This just
means a Lorentz invariant number at each point and time. We could
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ask how much this number changes as one goes from one event in
spacetime to another:

Af = f (x4 Ax) — f (xF) (368)

The quantity on the left is clearly a scalar because it is the different
in the value of a scalar field at two points. Let’s imagine that we take
Ax" to be really smaller so that Af is proportional to Ax# then we
have

)
Af = axfi‘ Axt = f,AxH (369)

Because Ax* transforms as a contravariant vector and Af doesn’t
transform, f,, must transform as a covariant vector.

We could also imagine taking the derivative of the vector field to
create a tensor, for example,

dAH
B
Ay = Y (370)

If we take A¥ to be the vector potential plus the scalar potential,

Al = i 1 , (371)

we have A
dydV Al = T” T and 9, A% = 0 (372)

gives the equations of electrodynamics in the Lorenz gauge, where

H_— cp .
J [ ] ] (373)

We have argued that we can only measure the fields themselves,
so we would like to figure out how the fields transform. Under ro-
tations the fields act like vectors. Can we generalize the electric and
magnetic field to be four-vectors?

The answer is no. Let’s take a look at definitions of the fields in
terms of the potentials,

10A

= -V T (374)

= VxA (375)

Let’s look at the x—components of the fields

d 10A
Ex = —£ ———= = Ag1 — A1 (376)

By = — == =A3p— A3 (377)
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so the electric and magnetic fields seem to be the components of the
second rank tensor,

E. 0 B. —B

Fap = — (Anp — Apa) = (378)

E. B, —By 0

where the index « labels the rows and B labels the columns. Let’s
look first at the Lorentz force equation,

dp v

i (E+; ><B) (379)
To generalize this we know that p transforms as the space-part of the

four-vector p¥. We also need to use the proper time 7 instead of the
coordinate time ¢, this gives

dp _ 1q
— == E B
P I (U +UxB) (380)
Something to think about. Why did the velocity terms on the right-
hand side become four velocities?

We also need an equation for the time-like component of the four-

momentum. p
pt _ 1
— =-U-E.
s (381)
We can combine these equations into a single equation using the field
tensor,
dp* au* g
il sl N
it~ AT c st (382)
or
E 0 E« E, E c
e R e B (383)
T | py c Ey —B; 0 By vy
Pz E, By —By 0 Uy

which defines the field tensor without reference to the potentials. The
timelike components of this mixed tensor are not antisymmetric but
it does have the advantage that its components are independent of
the signature that you are using.
Similarly Maxwell’s equations can be written in the compact form
Ff = 47” J* and F* = 0 (384)

where

(385)
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To construct F*f from F*f we put E — B and B — —E. This is called
a duality transformation.

Transformation of Radiative Transfer

The equations of radiative transfer follow the intensity of the radia-
tion field. We would like to understand how this and other radiative
transfer quantities transform relativistically.

As I argued earlier, the intensity of a radiation field is related to
the phase space density of photons. Phase space density is simply
the number of particles in a certain range of momenta in a particular
location, N

f= Pp/d3x (386)
We would like to see how f transforms relativistically. First the nu-
merator is simply the number of particles in the region of phase
space that we can count and all should agree upon. The second
term in the denominator is the volume that the particles occupy.
Let’s assume that the primed frame is moving a velocity Bc in the
x—direction relative to the unprimed frame. For convenience let’s
assume that the origins of the two coordinate systems coincide at
t = t' = 0. These assumptions cover all of the possibilities because
the volumes d°x and d®p are invariant under rotations. The following
derivation follows one by Jeremy Goodman. We will take ¢ = 1 to
simply the proof.

First let’s write momenta in the primed frame in terms of its val-
ues in the unprimed frame, we have

pi = v (pt—Bpx) (387)
pe = 7 (px—Bpt) (388)
P; = Py (389)
p. = Pz (390)

Now let’s construct the Jacobian of the transformation,

opy  dpx Pk

. ) ) 0
ooy o ||y (1-p) b B
Sy vy 9% | —
Iy Iy Op: 0 1 0 (391)
oz 9pz 9p: 0 0 1
dpx  dpy  Ipz
yielding the value of the Jacobian,
ap[)
1-p=—|. 2
7( ﬁapx (392)

Now we can calculate dp;/9dp, from the relationship between the four
momentum and mass

pi—p =m (393)
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so dp;/dpx = px/pr and the Jacobian is

Px v (pt — Bpx) _ pi
1 — —_ = = —,
o ( B ” ) o ” (394)
SO , 3
d3p’ = %d:”p SO dptp is invariant. (395)

Now let’s look at the transformation of the length interval dx. Let’s
take two particles travelling at the same velocity but separated by
some distance. First in the primed frame we have
xy = 'ty + x4 (0), x5 = 'ty + x5(0). (396)
To measure the distance between them in the primed frame we take
t'y =t so Ax’ = x’,(0) — x}5(0). Let’s substitute the values of x/, and
t', in terms of x4 and t4 to yield
v (x4 — Bta) ="y (ta — Pxa) +x4(0) (397)
and solving for x4 yields
p+o % (0)
xXp = ta .
14 po’ v (14 po’)

Notice how the particle travels at a different velocity in the new

(398)

frame and the relativistic addition of velocities. Now we find that

Ax'
A= A By (399)
Looking at the denominator, we have
/ /
Y (14 poy = TPt _ e (400)

!/ L/

Pt Pt

where we have used v/ = p//p; and the inverse Lorentz transforma-
tion, so we find

/
Ax = Ax’% SO ptd3x is invariant. (401)

Therefore, d®*xd3p is Lorentz invariant and
dN dN

f= Bp'Bx'” = Bpd3x’ (402)
phase-space density is a Lorentz invariant.
Let’s calculate the energy density of the photon field,
hWwfdp = hvfp*dpdQ = u,(Q)dQdv (403)
2
hvf <hv) d (hv) aa = idﬂdv (404)
c c c

W33 fdvdQy = %dﬂdv (405)

" dvdQ) = b dvd
C—zva—ﬁVQ (406)



Because the left-hand side is a bunch of Lorentz invariants we find
that

Iy . .

3= Lorentz invariant (407)
A second more heuristic way to find this result is to focus on the
intensity of blackbody radiation

2h V3

Iy = By(T) = cizexp(hv/kT) -1

(408)
To preserve the shape of the blackbody function, the ratio hv/kT
should be invariant with boosts. The constants, & and ¢, must also be
invariant, so we have

I, B,(T) 2h 1

P ?W = Lorentz invariant. (409)

Because the source function S, appears in the equations of radiative
transfer as I, — S,, Sy must have the same transformation properties
as I, i.e.

Sy N

5= Lorentz invariant (410)
The optical depth 7 is simply the logarithm of the fraction of radia-
tion that remains after passing through a slab of absorbing material
we have

lay l

Ic . .
snd mvav = @wxv = Lorentz invariant (411)
If we move relative to the slab in the x—direction, the thickness of
the slab in the y—direction, I, does not change. Although v and sin 6
will change, k, will not change because it is not in the direction of the
motion, so we have

v, = Lorentz invariant (412)
Finally, we have j, = a, Sy, so

1]/—1; = Lorentz invariant (413)
These relations allow us to calculate the radiative transfer through

a medium in whichever frame is convenient. We could calculate

the source function and absorption in the rest-frame of the material
and the radiative transfer in the “lab” frame. Or we could calculate
everything in the rest frame and translate the intensity to the “lab”

frame.
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Further Reading

To learn more about special relativity, consult Chapter 12 of
e Jackson, ]. D., Classical Electrodynamics.

Please note that Jackson uses the opposite signature to here, so some
formulas may differ.

Problems

1. The Ladder and the Barn: A Spacetime Diagram:

This problem will work best if you have a sheet of graph paper.

In a spacetime diagram one draws a particular coordinate (in our
case x) along the horizontal direction and the time coordinate
vertically. People also generally draw the path of a light ray at 45°.
This sets the relative units of the two axes.

(a) Draw a spacetime diagram and label the axes x and t. The
t-axis is the path of Emma through the spacetime.

(b) Draw the world line of someone travelling at % of the speed
of light. The world line should intersect with the origin of the
spacetime diagram. Label this world line #'. The #'-axis is the
path of Kara through the spacetime.

(c) Draw the x’ axis on the graph. Here’s a hint about where it
should go. The light ray bisects the angle between the x and
t axes. Kara who is travelling along ' will find that the speed
of light is the same for her, so the light ray must also bisect the
angle between x’ and .

(d) Parallel to Emma’s time axis draw the walls of the barn in
pencil. The barn is 4.5 meters wide in Emma’s frame.

(e) Draw Kara’s ladder along Kara’s x-axis. The ladder is 5 meters
long in Kara’s frame. How long is it in Emma’s frame.

(f) Draw the world lines of the ends of Kara’s ladder. These lines

are parallel to Kara’s time axis.

(g) Erase a portion of the barn walls to allow Kara’s ladder to fit
through.

(h) Using the diagram, explain how Kara and Emma can under-
stand how the too-long ladder fits in the too-small barn.
2. The Fermi Process:

One model to understand how cosmic rays are accelerated is
through shocks. The main idea is that a charge particle can cross
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a shock and turned around by the tangled mangetic field and
recross the shock. Each time the charge does this it gains energy.

To understand this let’s use a simplified model in which two mir-
rors are travelling toward each other at some velocity v. When

a particle hits the mirror, its energy in the frame of the mirror
remains unchanged but its velocity and therefore the spacelike
components of the four-momentum change sign.

(a) Draw a diagram with the two mirrors.

(b) For argument’s sake, let’s first focus on the mirror on the left
and consider that the mirror on the right is moving. What is the
four-velocity in this frame of the mirror on the left (Ul” )? What
is the four-velocity in this frame of the mirror on the right (U})?

(c) Now let’s focus on the mirror on the right and consider that
the mirror on the left is moving. What is the four-velocity in
this frame of the mirror on the left (Ully )? What is the four-
velocity in this frame of the mirror on the right (U:V )?

(d) To start let’s assume that the particle of mass m approaches
the mirror on the left at the velocity of the mirror on the right.
What is the four-momemtum of the particle (p*) in the frame of
the mirror on the left?

(e) The particle bounces off of the mirror. What is its four-momentum
now?

(f) Now the particle is approaching the mirror on the right. What
is the zeroth component of the four-momentum of the particle
in the frame of the right-hand mirror? One could do a Lorentz
transformation but it is easier to use Ury pu to determine the
energy of the particle in the primed frame.

(g) Using the answer to 6, construct the four-momentum of the
particle in the frame of the right-hand mirror (p;l).

(h) The particle bounces off of the mirror. What is its four-momentum
now?

(i) Now the particle is approaching the mirror on the left. What is
the zeroth component of the four-momentum of the particle in
the frame of the left-hand mirror? Again one could do a Lorentz
transformation but it is easier to use UIIH p to determine the
energy of the particle in the unprimed frame.

(j) Compare the energy of the particle in step (d) to the energy of
the particle in step (i). Has the energy of the particle increased?
Let’s let the relative velocity of the mirrors approach the speed

of light.
1

~1—-—
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By what factor does the energy of the particle increase each
time it goes back and forth.

(k) The final element is the fact that only a tiny fraction of the
particles bounce back and forth. Let’s take that fraction to be
1072 and 7 = 100. What can you say about the final distribution
of particle energies?

3. Boosting We are going to figure out how times and energies mea-
sured by someone in motion differ from what we might measure.

(a) Use special relativity (the Minkowski metric) to figure this
out. I measure a photon to have an energy E. What is the four-
momentum of the photon?

(b) My pal is travelling toward me in the opposite direction of the
photon at a velocity fc. What is his four-velocity? Use the defi-
nition v = (1 — B?) AR simplify the expression. What energy
would he measure for the photon? What does the expression
look like as v gets much larger than one?

(c) If my pal observes the photon to have an energy of 100 MeV
while I say its energy is less than 500 keV, what is the minimal
value of v for my pal (take § ~ 1 to make life easier)?

(d) My pal is still coming toward me at a velocity Sc. When he
is a distance r away from me (at a time f() he emits a photon
toward me. How long does it take this photon to reach me?

(e) From his point of view a short time At later he emits another
photon toward me. How long is At in my frame and when do
I receive the second photon? What is the difference in time
between when I receive the first and second photons? What
does the expression look like as 7 gets much larger than one?
Compare it with you answer to (b).

4. Precession We will calculate the transformation that results from a
pair of boosts in different directions.

(a) Write out the Lorentz transformation matrix for a boost in the
x—direction to a velocity B;.

(b) Write out the Lorentz transformation matrix for a boost in the
y—direction to a velocity B,.

(c) Write out the Lorentz transformation matrix for a boost in the
x—direction to velocity B followed by boost to a velocity B, in
the y—direction.

(d) Write out the Lorentz transformation matrix for a boost in the
x—direction to velocity B, followed by boost to a velocity B, in
the y—direction, followed a boost in the x—direction to velocity
—Bx followed by boost to a velocity —pB, in the y—direction.
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(e) Now you have undone both boosts and have zero velocity, did
you get the identity? Why or why not?






Bremsstrahlung

Bremsstrahlung or braking radiation is the radiation that the charged
particle emits while being accelerated in the electric field of another
particle. Because the amount of radiation produced is proportional
to the square of the acceleration, the less massive particle generally
dominates the emission. Typically, we are talking about an electron
and an ion, so the mass ratio is greater than 1,800 to one.

Why is it called bremsstrahlung? X-rays were first produced in
the laboratory by accelerating electrons along a strong electric field
(a typical potential difference of 10kV) from an anode to a cathode
in vacuum. When the electrons hit the thick metal cathode and stop
(brake), they emit cathode rays or X-rays.

The Physics of Bremsstrahlung

If we ignore the effect of radiation reaction of the trajectory of the
charged particle, we can solve for its path exactly (at least in the
classical limit) and then use the formulae for the radiation field that
we derived a few weeks back. You can check out the Padmanabhan
text if you would like to see an exact treatment.

Something to think about. What is the exact classical trajectory of the
charged particle?

We will approximate the exact trajectories shown in the left-hand
panel of Fig. 1 by a simple straight line trajectory in which the ac-
celeration of the particle lies mainly normal to the direction of the
particle’s motion.

the trajectory

e U Figure 9: Bremsstrahlung. The left

i panel gives the exact trajectory exclud-
ﬂ b! B ing radiation reaction, and the right
/Ze\ | panel shows how we will approximate

|

|

|

|

b
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Something to think about. When does the straight line approximation
fail?
We will also use the dipole approximation, so d = —¢R where R
is the position of the particle. By taking the time derivative on both
sides twice we find,
d=—ev (414)

Ultimately we will be interested in the Fourier transform of the radia-
tion field to understand the spectrum so we have,

24 _ e © it
wid(w) = = lmve dt. (415)

Most of the acceleration of the particle occurs during a short time in
which R ~ b. This collision time is approximately

b
T= 2 (416)
so the bulk of the contribution to the integral happens for — TSR,
If wt > 1, the integrand will oscillate rapidly so the integral will

be small. On the other hand if wt < 1 the exponential is essentially

unity so
A v, w1
d(w) ~{ 2m?™Y 1
(w) { 0 wr>1 (417)
where mv is the change of velocity during the collision.
The energy spectrum is given by
AW  8rwt |5, |2 22 mv?, wr< 1
_ = — d w ‘ = 373 ’ 18
dw 3¢c3 () { 0, wt>1 (428)
Let’s estimate the value of Av,
© b1 Ze Zer [ b 2Z¢*
Av = ———dt = — dt =
T . wRm R m Jco (b2 44242)3/2 mbv (419)
so we can estimate the emission from a single collision
2,6
dW(b) _ | seogar b<o/w (420)
dw 0, b>v/w

We would like to integrate over all impact parameters. We know

that for a particular frequency, w, the contribution to the spectrum
vanishes for b > v/w. Let’s assume that there is a mininum value of
the impact parameter bmin below which our analysis fails. Looking at
the left-hand panel of Fig. 1, you may be able to figure out when this
is the case, so we have

ALY bmax  872¢b
dwdvVdt ”g”izm’/ 3ncdmzorp2 b (421)

min



_ 6 el z/bmax db (422)
33m2o T Joy, b 4
16¢° Drmax
min

We can see that our particular choice of the minimum and maximum
impact parameters is not particularly important because they enter
logarthimically. We can take

(424)

There are two ways to get a value of bpin. First is to estimate at what
impact parameter does the trajectory strongly differ from a straight
line, so Av ~ v, we get

2Ze? B 2Zé?

— min ~ . (4‘25)
mb(l) v mv?

v~ Ao(b) =
We could have gotten this same value if we had compared the initial
kinetic energy of the particle with its potential energy at point of
closest approach. The standard value is slightly different

1) _ 4zeé

bmin = W (426)

The second estimate comes from our assumption that the path is
classical. Typically over distances less that the de Broglie length of
the electron one must treat the problem quantum mechanically,

@ _
Bain = - (427)
bI(iiL ~ bl(li)n for mv? /2 ~ Z%(13.6eV), i.e. when the kinetic energy of

the particle is comparable to the binding energy of the ion.
Generally, the result for the bremsstrahlung spectrum is expressed

as
dw 167te® )
dwdVai ~ 3 5amrg i 81 (0w) (428)
where the Gaunt factor
\/g bmax
giplow) = Z-ln <b ~ ) (429)

shifts the uncertainities about the values of the minimum and maxi-
mum impact parameters into some function of order unity.

Thermal Bremsstrahlung Emission

The most important case astrophysically is thermal bremsstrahlung
where the electrons have a thermal distribution so the probablility of
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a particle having a particular velocity is

—E/kT 3 —mo*\
dP « e E/ dv=exp<2kT>dv (430)

We would like to integrate the emission over all the velocities of the
electrons to get the total emission per unit volume,

oo dW(o, _ 2
dW(T,w) fvmin dwﬁlz{/(;}t) e P2y (431)
dwdVdt f00°02efﬁmvz/2dv 43

If we look at the emission for a particular velocity, the emisision rate
diverges as v — 0, but the phase space vanishes faster; however, it
is stll reasonable to cut off the integral at some minimum velocity.
We know that radiation comes in bunches of energy fiw so for a
particular frequency mv?/2 > hv for the electron to have enough
energy to emit a photon.

The integral in the numerator is straightforward (the one in the
denominator is also possible) and we get,

ffo_ dW
= GVdtdy (432)
257ed /21 1/2 _ _ B
~ 3w (Skm> T2 e ™ gy (433)

= 68X 10*382211@111-Tfl/ze*hv/kTgff (434)

where everything is in c.g.s. units. s is the thermally averaged
Gaunt factor.

ff

We can integrate €, over frequency to obtain,
Bred (2mkT\Y?_,
ff = T3 <3m> Z7nengp (435)
= 14 %1077 Z2%nn; T gy (436)

Use 1.2 or so for gp.

log e{f

logv

Figure 10: Thermal bremsstrahlung
spectra for two temperatures that differ
by a factor of ten



Thermal Bremsstrahlung Absorption

If we assume that the photon field is in thermal equilibrium with the
electrons and ion we can obtain an expression for the corresponding

absorption,
el! ff — ff
17 = v =& Bu(T) (437)

Something to think about. Why does this equation hold?
Using the form of the Planck function we obtain

4 [ 2m\V2_ _ _ .
aff = e (3km> TV2722n,n0~3 (1—6 hv/kT) S (438)

For hv >> kT the exponential is negligible so &, & v~3. For hv < kT
we have

45 (2m \'? 25
a{f = 3mke (3km> T 3/2Z2ngni1/ zgff (439)

We can also integrate oc{,[f over all photon energies to get the Rosse-
land mean absorption coefficient which is

off =17 x10°5T7222n,n,3x (440)

Relativistic Bremsstrahlung

We are essentially going to redo the whole bremsstrahlung calcula-
tion in an entirely different way. This is called the method of virtual
quanta, and it gives hints about how one does calculations in quan-
tum field theory.

We spent a lot of time looking at the consequences of the elec-
tromagnetic fields of a moving particle, specifically the so-called
acceleration field. Now we will focus on the velocity field,

_ _ 12
B = ¢ B0 2P (441)
B(r,t) = [nxE(rb). (442)
where
k=1-n-B (443)

If you remember, the brackets mean that the value inside is taken at
the retarded time. Let’s assume that the charged particle is moving
along the x—axis at a constant velocity v and passed through the
origin at t = 0. First, the retarded time for the particle is

R
fret =t — ? (444)
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Figure 11: Geometry of a moving

h
Ey charge
Y
R Ex
7l
x
Utret ot t
and
R? = P+ (x— Oher)’ (445)
R\2
= yz + (x —ot+ UC> (446)
0 = (B-1)R24+28(x—o) R+ (x—o0)’+1*  (a47)
S0
2 2 2 2\1/2
R=72B(x—ot) +7 (7 +72(x —ot)?) (448)
We can also write the unit vector
v+ (x —ot+ovR/c)X
n= L R ) (449)
S0
v+ (x —ot+vR/c—vR/c)X
n—-f = yy+( R ) (450)
v+ (x — vb)k
- Yook (45)
Let’s calculate
Kk = 1-n-g (452)
B o(x —vt+oR/c)  (1—PB*)R—B(x—ot)
= 1- R = R (453)
 R-Plx—ot) (PP (454)
Let’s get the components of the electric field
2 ’73
Ex = q(x—ot)(1-p7) (455)
' [y2 + 72(x — 0t)22
x — ot
- el (456)
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E, = %y (457)
Z
e = 12 (458)

where we get the z component and dependence by symmetry and

3/2
e L G CEL L I (459)

Let’s assume a second charged particle is located a distance b from
the origin along the y—axis, it will experience an electric and mag-
netic field given by

t
Ex - _% Bx - 0 (460)
b
E, =0 B, = BE, (462)

The electric field in the y—direction is typically larger by a factor of
7 also the electric field in the x—direction changes direction so its
effects are less.

Let’s imagine that the charge is moving at nearly the speed of
light, then the y—component of the field really dominates and the
perpendicular magnetic field is nearly the same magnitude, so the
field of the moving charge looks a lot like a transverse electromag-
netic wave. We can imagine that the second charge Thomson scatters
some of this “virtual” wave to form a real wave.

We need to calculate the Fourier transform of this virtual wave to
get the spectrum of scattered radiation

~ ; -3/2 .
Bu(w) = % / Ex(t)e'dt = 117 / (PP 4 17) "
~ -3/2 .

By(w) = / Ey (D) dt = ””b / (e rr) Ty

One can see that because Ex = —vt/bE, that

A v d
Ex<C(J) == 15%

After the change of variable x = <ot /b, these integrals can be ex-

Ey(w) (465)

pressed as modified Bessel functions

Bw) = it [‘”Ko@:)} (466)
. g |wb wb
Ey(w) = m{WK <’rv>} (467)

From Fig. 12 we see that the energy flux carried by the electric field
in the x—direction is suppressed by a factor of v relative to that in
y—direction and that it peaks around w = yv/b.

ASTROPHYSICAL PROCESSES

81



82 JEREMY HEYL

Figure 12: The frequency spectra for the
electric field in the y-direction (upper)

and x—direction for a fast moving
charge
1 g%
72 720252
Inw
What remains is to integrate this spectrum over all possible impact
parameters from by, to infinity. Because the expressions in Eq. 466
and 467 cut off exponetially for large values of b, we do not need to
consider a maximum impact parameter. This yields
aw 24% fc\2 102
—(w)=—— (- xK xKx—f—xz(sz—K2x>
(@) = =L (5 [xko (@)K () = 5 522 (K () — K ()
(468)
where x = wWhyin/ (7v).
aw Figure 13: The frequency spectrum
dAdInw for the total electric field of a rapidly
moving charge averaged over impact
parameter.
o1 1 10 Wbmin/ (70)

We could also have used the same assumptions as in the non-
relativistic case to perform the integral. The bulk of the contribution
to the integral is for yvt ~ b, so if w > yv/b we expect the integral
to be really small, on the other hand if w < yv/b we have

Aoy 1 ity Y0 [P (200 2\T2 . g
E(w)NE/Ey(t)e dt_ﬂ/_w(fyvt+b> dt

~ obm
(469)
The energy flux carried by the virtual wave is
dW A L b< yv/w
2 ClE(w))? = m2v2b?’ v 0
)] { LN (470)

It’s quite straightforward to calculate the flux of virtual radiation
scattered by the electron,

AW o(w) dW _{ Szt o)« o/

— =07 3v2m2c3h2 o 7
dw or dAdw 0, b>yv/w

(471)
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which for ¢y — 1 is exactly what we got before. The extra bit with
o(w)/or is to include the fact that the cross-section for electrons to
scatter light differs from o for photons with iw > mc?.

So bremsstrahlung comes down the Thomson scattering of the
virtual photons of the electromagnetic field of an ion.

Further Reading

To learn more about bremsstrahlung and virtual quanta, consult
Chapter 15 of

e Jackson, ]. D., Classical Electrodynamics.

Problems

1. Bremsstrahlung:

Consider a sphere of ionized hydrogen plamsa that is undergoing
spherical gravitational collapse. The sphere is held at uniform
temperature, Tj, uniform density and constant mass My during
the collapse and has decreasing radius Rg. The sphere cools by
emission of bremsstrahlung radiation in its interior. At t = ty the
sphere is optically thin.

(a) What is the total luminosity of the sphere as a function of
My, R(t) and Tj while the sphere is optically thin?

(b) What is the luminosity of the sphere as a function of time after
it becomes optically thick in terms of My, R(t) and Tp?

(c) Give an implicit relation in terms of R(t) for the time t; when
the sphere becomes optically thick.

(d) Draw a curve of the luminosity as a function of time.

33






Synchrotron Radiation

Syhchrotron radiation, a.k.a. magnetic bremmstrahlung, is produced
by relativistic charged particles travelling through a magnetic field.

Motion in a magnetic field

The Lorentz force equation relates the rate of change of the four-
momentum to the electric and magnetic field,

ar" _ G
it CF Uy (472)
If the electric field vanishes, we get the following two equations
d _1 d 2y
mv) = Ty xBand £ (yme?) =0 473

The second equation tells us the that the magnitude of the velocity
does not change. The first equation tells us that the magnitude of the
velocity (v)) along the field B is also constant. Because both the mag-
nitude of the velocity and the parallel component are constant, we
find that the magnitude of the perpendicular component is constant

too, so we find
dv q

i B
it~ qme (474)
and the particle gyrates around the magnetic field with a frequency
_ 4B
WB = e (475)

The acceleration (wpv ) is perpendicular to the motion of the particle
so we can use formula (44) from Unit 3 to get the total power,

2 g2 24% , g*B? 2
P=3Tt = TP o = Shep B r0)

“3 3 T 337
Let’s assume that the particles have a random distribution of veloc-
ities relative to the direction of the magnetic field, so we need the
mean value of s 052
<,le> = f—n /sin2 adQ) = % (477)
where « is the pitch angle.
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Spectrum of Synchrotron radiation

If the electron is non-relativistic its dipole moment varies as ¢/“’8* so
we would expect radiation at a single frequency wp. The relativistic
case is somewhat more complicated. The electron still travels in the
circular with a particular frequency but the electric field essentially
vanishes except for a small region Af ~ 1/. near the direction of the
electron’s motion (remember relativistic beaming).

We know that the electric field vanishes everywhere except within
a cone of opening angle 1/, so a distance observer will only detect a
significant electric field while the electron is within an angle A6/2 ~
1/ of the point where the path is tangent to the line of sight. How
long does it take the particle to pass through this angle?

Using the equation of motion we have

Av g
VmAit =V x B (478)
Let’s use Av = vAf = 2v/ to get
20 q_ .
'ymm = _vsin aB (479)
2 2
At o= (480)

gBsina  ywpsina

We also need to calculate how long between when the radiation
emitted at t and ¢ + At arrives at the distant observer. The difference
between the observed times is less than At by vAt/c so we get

2 v
M= —— (1-2
Ywp sinx ( c) (481)

In the ultrarelativistic limit, 1 — v/c ~ 1/(27?) so we have

At ('ySwB sin zx) B . (482)

The distant observer will see zero electric field most of the time
with blips of electric field lasting for a time At# every time the elec-
tron loops 271/ wp. Let’s define a critical frequency,

3
We = 57%)3 sina. (483)

We expect that the spectrum will cut off at frequencies similar to w,.

Qualitative Spectrum

We earlier found that for a relativistic particle the intensity of the ra-
diation field depended almost entirely on the combination 6 where



0 is the angle between the line of sight and the direction of the parti-
cle’s motion, so

E(t) = F(v6) (484)
If we take t to be the time measured in the observer’s frame after
0 = 0 we find that

Y0 = 27 (’yza)B sin DC) b o wet (485)

from equation (11), so we find that

E(t) = g(wet). (486)

To find the spectrum we are interested in Fourier transform of E(t),

a _ i 0 iwt _ i/oo i@'w/wfdi _
E(w) = 9 /_oo g(wct)e!tdt. = 9 _oog((;‘)e o h(w/w;)
(487)
so the average power per unit frequency is a function of w/we,

aw 1 dW _ _ w

We already know from equation (5) what the total power emitted by
the charged particle so we have
P= %rgc/%i'ysz =C /oo F <w> dw = w.Cq /oo F(x)dx  (489)
3 0 We 0
We would like the function F(x) to be dimensionless which sets the
value of C; up to a dimensionless number. If we take § ~ 1 we obtain

V3 ¢®Bsina w
P =1 "=
(W) =53 ( wc) (490)
where )
_ 37°gBsina
c = e (491)

Spectral Index for a Power-Law Distribution of Particle Energies

Even before calculating the form of F(w/w,), we can determine some
interesting properties of the radiation spectrum. We found from the
homework that a shock often gives the electrons that bounce across it
a power-law distribution of energies, such that

N(E)dE = CE"PdE or N(7y)dy = Cy~Pdy (492)

over a particular range of particle energy. Let’s use formula (19) to
calculate the total spectrum from these particles,

72 _ 72 w _
Pot(w) =C | P(w)y Fdy cx/ F () v Pdy. (493)
M M We
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Let’s change variables to x = w/w,. Remember that w, = Ay? so
7? « w/x, we get

Ptot(w) o w—(p—l)/Z/

X1

X2

F(x)xP~/2dx (494)

If the range of the power-law distribution is sufficiently large (at
least an order of magnitude) we can take x; — 0 and x — oo in
(23) so that the integral is simply a constant and we find that the
spectral distribution is also a power-law w™° with a power-law index
ofs=(p—1)/2.

This power-law spectrum is valid essentially between wc (1) and
we(72). To understand the spectrum for frequencies outside this
range and other details as well we must calculate the function F(x).

Spectrum and Polarization of Synchrotron emission — Details

The spectrum of the observed radiation will depend on the Fourier
transform with respect to the observed time of the electric field. The
radiation field is given by the expression
I M By x f
E(r1) = 7 [ ag < [0 = B) < Bl (495)
In chapter three we manipulated this expression under the assump-
tion that we were really far from the particle so the value of R doesn’t
change much as the particle moves to get
AW  gPw?
dwdQ)  4m2c

2
(496)

/n X (nx B)exp iw (f —n-xo(t')/c)] at’

Figure 14: Geometry of synchrotron
With 76 Toss of generality we can assume that the particle gyrates
in the x — y—plane and our line of sight is in the x — z—plane and
makes an angle with the x—axis. With this geometric setup we can
calculate

/ /
nx (nxp)=—e, sin (v{:) + €| cos (U;) sin6 (497)

The term in the exponential is the observed time in terms of the
retarded time,

r(t /
I z(t ) _ t— %cos@sin <vat) (498)
a 02\ [ot! 1 [ot'\?
~ tlc(12> a6(a>] (499)
g2 2B3¢3
~ t—pt+ 3/%’ + faz (500)
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To get the final equation we took 1 — 8 — (2y) land g — 1.
Substituting these results into equation (25) and taking the small-
angle approximation for the polarization vectors as well yield

aw AWy aw, (502)
dwodQ ~  dwdQ " dwdQ) >
. 2
dw, Fw? | [t iw (., Ay ,
dwdQ 4l / o P 242 O30+ 342 at| (503)
dw, 7Pw26? iw 202413 2
= — (2t dr'
dwdQ) 4m2c / &P {272 ( CR T, )} (504)
where 9% =1+ 262
Let’s make the following change of variables,
ot _ wae?; w
yzvggmﬂﬂ=3m3~2% (505)
to yield
2
AW,  qRw? [ab] o0 3. 1 4 ik
it~ e\t ) |[Lvew |3 (v 57) ] o9
aw, g0 (ab,\*| [ 3. 1.\ .2
dod ~ 4 (7> | vew [2”7 (y 3y )] 4t (507)
(508)
Figure 15: Electric field from a gyrating
particle B = 0.1,0.5,0.9 and 0.99. The
E (t) insets show the power spectrum with
w/w, along the x—axis. These were
calculated without the small-angle or
p=01 ultrarelativistic approximations. Keep
,5 =05 in mind a particle with o = 103 has

B = 0.9999995.

B =0.99

It turns out that these integrals can be performed with some spe-
cial functions called Airy integrals or modified Bessel functions to
yield,

dwdQ) — 4m2c \ y2¢ K%(}y) (509)

2
AW,  qRw? [ab]
73
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dW 200202 [ af.,\ 2
I _ qgw vy 2
dodQ) — 4m?c ( e ) K% (n) (510)

We would like to find the total emission per orbit over all solid
angles. The emission lies within an angle 1/ of a cone of half-angle
« centered on the magnetic field, so we can take the element of solid
angle d() = 2sinadf and integrate,

dW,  27w*a’sina 4,2
dw 33yt / O K (511)
AW, 2720232
H o q w-a Slno(/ 27212
T = ey 62,6°K5 (11)d9 (512)

These integrals can be written in terms of Bessel functions to yield,

.
% _ w [F(x) + G(x)] (513)
dw, 2 si
Twu _ %Cﬂn“pr(x)—c(x)] (514)

where .

R = [TK@d Gl =l )

and x = w/we .
Something to think about. Why could we take the limits of inte-
gration in equations (35) and (36) and (39) and (40) to be infinite?
To convert these values in a power per frequency we have to di-
vide by the orbital period of the charge T = 27r/wp to give

3 .

P, = %[P(x)—i—(}(x)] (516)
3¢°Bsi

P = VATBSRG p G (517

The total power is proportional to F(x) that has the following asymp-
totic values,

F(x) ~ \/éin(;’)(;)lm, <1 (518)
F(x) ~ (;)mﬂxl/z’ x> 1 (519)

Synchrotron Absorption

We are particularly interested in the form of the spectrum from a
power-law distribution of particles for frequencies where the region
is optically thick. We know from the formal soltuion of radiative
transfer that the spectrum approaches the source function at large
optical depth. Furthermore Eq. 86 yields a relationship between the
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Figure 16: Synchrotron Functions
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number of particles of various energies and the volume of phase
space at each energy

_2mB (gom -1
Sy = =z (glnz — 1) . (520)

For free ultrarelativistic particles the density of states is proportional
to E2, and we have assumed that their number is proportional to E~7.
Let us imagine that synchrotron emission is a transition between the
upper state at an energy E + hv and the lower state at energy E, so

E E
(521)
where the final result obtains in the classical limit where hv < E, so

— 2
gom _ (E+W)EP (0 NP hw
am 1_E2(E+hv)—P 1=(1+ 1= (p+2)

we have

3 3 1/2
5, ~ 2hv E ~ 2 4r m.c 572 (522)
2 (p+2)hv ~ (p+2) \ 3 gBsina

where we have related the energy of the state (E) to the frequency
through Eq. 483. Notice that the spectral index does not depend on
the power-law index of the particle distribution but rather results
from the power-law relationship between particle energy and fre-
quency. Because the optically thin emission spectrum increases more
slowly with frequency than the source function (or even decreases),
we expect synchrotron absorption to be important at low frequencies
where the the integrated optically thin emission exceeds the source
function.

A Complete Synchrotron Spectrum

The complete spectrum from synchrotron radiation must account

for the evolution of the electron energies, absorption, the minimum
electron energy and the age of the source. We have all the necessary
ingredients to figure this out. First, § calculates the shape of the pho-
ton spectrum for a given power-law distribution of electron energies.
The second ingredient is to calculate the distribution of electron ener-
gies as a function of the time since the electrons were accelerated (or
injected). Let us assume that the electrons initially have a power-law
distribution of energies

dN
dtdyg

= C, " for 10 > Y. (523)
Furthermore the electron energies decrease with time according to

_ N 29'B?
1+ Aqyot!’ 3m3cd

Y (524)



where # is the time since the particles were accelerated By inverting
this equation we obtain the initial electron energy in terms of the

final electron energy
i

To=712 At (525)
and P .
Y0
n__ - 26
dy (1= Ayt')? G26)
SO IN
AN P (1= Ay )P
Gy di Cy P (1—Aqyt)" . (527)

It is crucial to understand the validity of this distribution. Clearly we

must have y
m
T4 Ayt =7 < ap

Otherwise the number of electrons vanishes because either they have

(528)

not yet had time to cool to such a low energy or they have already
cooled below this energy. The original power-law distribution is
truncated at high energies and is extended below 7, by cooling.

If the source were only active instantaneously or for a short time
long ago At < ¥, this would be sulfficient, but if we are interested
in a source that has been active continually from some time ago we
must intergrate this distribution over the injection times in the past.
The resulting distribution is

t 5]
aN _ cyr’/ C(1— Ag)PRdl = Cy
dry to

(1— Aqt")p—1
(p—1)(=A7)

where the conditions in Eq. 528 determine the values of ty and ¢;. We
have

(529)

fo

_ L1 . 1
typ = max [O, a (’y Ym )] and f; = min (t, A’Y) . (530)

The latter expression in Eq. 530 encourages us to define

1

= T (531)

Yc

We will use this quantity to eliminate A from the equations. The
energy divides the electrons into those that have had a chance to
cool significantly since the source turned on a time ¢ ago and those
that have not cooled significantly. There are two possibilities for the
resulting distribution depending on whether 7. exceeds 7;;. We will
examine the distribution for 7. > 7, first; this is known as the slow
cooling regime. There are three possibly ranges for 7. First at the
highest energies we have

dN - Ci”)’c 7*(P+1)

R f .
iy p—1 or Ym < Ye <7y (532)

ASTROPHYSICAL PROCESSES
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For intermediate energies we have

AN _ Ctye gy |y (1 7\
iy 17 1 > for ym <7y <7 (533)

For v < . this reduces to

dN

E ~ Cty7P for vy < 7 < 7e. (534)

For the lowest energies the following expression obtains

AN _ Ctye _(ps1) ( % )’” < gt )”1
== - — - = for v < < Y.
dy p— 1’7 Y 7o T <Tm < Yc

(535)
The other cooling regmine is called fast cooling where y. < vy. Is
this regime for the largest energies v > v, > 7, Eq. 532 also holds.
For intermediate energies we have

dN Ct _
v %’Y 2 for e <y < Y. (536)
v (P - 1)')’111

and for the smallest energies v < 7. < 7 Eq. 535 again obtains.
Both of the distributions either for slow or fast cooling vanish for

/11Nt
Y < Yeut—off = ('Ym + ,)/C) : (537)
Well into the slow cooling regime we have v, < ¢ 50 Yeut—off = Yim-
Well into the fast cooling regime we have Y.yt—off = Yc. To find the
distribution of photon energies we have to convolve the electron
distribution with the function F(x). For w > wmax where

2 .
B 3V ut—ofdB sina
wmax - - a..._

e (538)

the results of § apply. On the other hand below this frequency, the
radiation results from the low-frequency limit of the function F(x)
(Eq. 518), i.e. Fy « w!/3. A second complication is the role of syn-
chrotron absorption outlined in § . We can combine the various re-
sults from this section to derive a schematic of the emission spectrum
from a synchrotron cooling population of electrons with constant par-
ticle injection. Figs. 17 and 18 depict the spectrum for slow and fast
cooling.

To learn more about the frequency spectrum of synchrotron emis-
sion from mono-energetic electrons, consult Chapter §14.6 of

® Jackson, ]J. D., Classical Electrodynamics.
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InF, Wiy, Figure 17: Complete synchrotron
1/3 w—(p=172 spectrum for an age less than the
maximum cooling time (slow cooling).

Inw

InF, We Figure 18: Complete synchrotron
1/3 -1/2
spectrum for an age greater than the
maximum cooling time (fast cooling).

Inw
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Problems

1.

Synchrotron Radiation:
An ultrarelativistic electron emits synchrotron radiation. Show that
its energy decreases with time according to

4p2
2¢*B]
3m3cd

v=7 (1+Ayt) A= (539)

Here 7 is the initial value of v and B| = Bsina. Show that the
time for the electron to lose half its energy is

tiya = (Ayo) " (540)

How do you reconcile the decrease of v with the result of constant
v for motion in a magnetic field?

. Synchrotron Cooling More Precisely:

Derive the evolution of the energy of the electron (or ) evolves in
time without making the ultrarelativistic approximation.

Power-Law Distribution More Precisely:

Calculate the photon spectrum for a power-law distribution of
electron energies as in § including the normalization and polariza-
tion.



Compton Scattering

When we looked at the scattering of light by electrons we assumed
that the energy of photon was not changed by the scattering and
that the electron was not relativistic. Compton scattering involves
dropping these two assumptions.

The Kinematics of Photon Scattering

We assumed that the light carries only energy but it also carries mo-
mentum so when an electron scatters light some momentum may be
transferred between the light and the electron. Let’s consider that the
electron is at rest (we can always move into the frame of the electron).
Initially we have

no_ mc wo_ El 1 |
pei = [ 0 ‘| and p7i = ? [ n; (541)
and after the scattering we have
E Efl 1 ]
ro_ _

The conservation of energy-momentum tells us that

Phi+ Pl = o+l (543)
or
ng = PZ‘ + PZZ‘ - Pi;f (544)

Let’s calculate the square of both sides,

PerPues = (Pt Phi = Php) (Puei + Puni = Puas)  (545)
mic? = w4 2pPuni — 2PPuar — ZP:ny,wi (546)
EiEf
0 = 2mE—2mE;—2—5 (1 —cosf) (547)
E4
Ef = ’ 8
f 1+ ni’z (1—cosf) (549
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We can write this really compactly by using the relationship between
the energy and wavelength of a photon (E = hc/A),

h
Ap=Ai+ (1~ cosd) (549)

A cute thing to ask is what is the final energy of the photon if the
initial energy is much greater than the electron’s rest-mass. We get

mc2

Efrng ————
f =1 "cosh

(550)
There is a second important change. If the energy of the photon
changes dramatically, i.e. Ef < E;, the cross section for the scattering

is reduced from or. Specifically

Inverse Compton Scattering

In Compton scattering the photon always loses energy to an electron
initially at rest. Inverse Compton scattering corresponds to the situ-
ation where the photon gains energy from the electron because the
electron is in motion.

Let’s imagine that the electron is travelling along the x—axis with
Lorentz factor . Furthermore, let’s think about the lab frame (un-
primed) and the electron’s rest frame (primed). The initial and final
energies

Ei = Ey (1 — Bcosf;) and Ef = Eyy (1 — Bcos 6}) (552)

where 0 is the angle that the photon makes with the x—axis in the lab
frame. Furthermore, we know that
!
Ei

Ef = — (553)
1+ -5 (1—cos®)

where O is the angle between the incident and scattered photon in
the rest-frame of the electron.

Let’s consider the case we E! < mc? so E| ~ E}. If we look at the
redshift formulae we find that

Ef = Ei7* (1 — Bcosb) (1 + B cos 6}) (554)

Let’s consider the case of relativistic electrons. If we assume that the
photon distribution is isotropic, the angle (cos#) = 0. (cos 9}) is also
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zero because the scatter photon is forward-backward symmetric in
the rest-frame of the electron so we find that

Ef = 7 (555)

when averaged over angle.

Inverse Compton Power - Single Scattering

Let’s consider an isotropic distribution of photons and derive the
total power emitted by an electron passing through.

We will first make use on some of the transformation rules that
we derived for the phase-space density of photons. Let vdE be the
density of photons having energy in the range dE. The number of
photons in a box over the energy range is a Lorentz invariant

vdEd®x = v'dE'd>x’' (556)

Remember that d®x = 7~ 'd%x’ and that E = E’ (with forward-
backward symmetry) so we find that

vdE  v'dE’ .
T -5 = Lorentz Invariant (557)
Let’s switch to the rest-frame of the electron. The total power scat-
tered in the electron’s rest frame is
dEy dE} T

where we have assumed that E/ < mc?. The first equality holds
because the emitted power is a Lorentz invariant. Why is this true?

Let’s assume that the change in the energy of the photon in the
rest frame of the electron is negligible compared to the change in the
energy of the photon in the lab frame, i.e. v> — 1 > E/(mc?), so
E} = FE/, so we have

dEf 2 U,dEl v vdE
= [ B = e [P (559)
The redshift formula for photons is
E' = Ey(1— Bcosf) (560)
so we have
dEs

- =cor?’ / (1 — Bcos6)* EvdE = cory? (1 + ;ﬁz) Uph  (561)

where
Uy = / EvdE (562)
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The rate of decrease of the total initial photon energy is

dE
i —CU’T/EUdE = —orcUpn (563)

so the total change in the energy of the electron and converted into
the increased energy of the radiation field is

dErad o dEf dE _ 2 1 2 _ 4 202
T_WJFE_CUTUPII |:"}/ (1+3ﬁ -1 —go'TC'Y‘Bupb

(564)
Let’s compare this with the synchrotron power of the same electron,

) 2/3 2 4
= St =5 (geor) (37 Gomthe) = Serers
(565)

Inverse Compton Spectra - Single Scattering

Let’s suppose that we have an isotropic distribution of photons of a
single energy Eg and a beam of electrons travelling along the x—axis
with energy ymc? and density N. Let’s also use an intensity that

counts the number of photons not their energies so
I
I(E) = 7= = Fd(E — Eo). (566)

What does the intensity look like in the rest frame of the electrons.
Remember that I, /v3 was a Lorentz invariant so we have

E'\?
I'(E ) = FO(E) 6(E — Eo) (567)
EN? S :
— fo(5 ) SOETBN~E) (9
_ R (BN _E—aE
= o (5) (") o

In the rest frame of the electrons the emission coefficient is simply
proportional to the mean intensity,

AN 1 /1 repl ot /
j(Ef) = No5 /41 (Ef, p')dp (570)
where we have assumed that E; = E'. Because I" is proportional to a
delta function, the integral is trivial giving
NIO'TE/ F() E E
(E,) = L oif 20 cp<— 0 (571)
TE = g "o+ <P < aa-p)

and zero otherwise. Now we can transform into the lab frame, using

the fact that j, /v? is a Lorentz invariant. We have

. E¢ .
j(Epup) = Eéj/(ﬁ}) (572)



NU’TEfFO ( )
2E5Y%B o7

. Eo Eo
AT pa—pry) ~ 5 < 0B By

and zero otherwise. Where did the extra y come from?.

Let’s assume that there are many beams isotropically distributed,
so we need to find the mean value of j(Ef, jif) over angle,

. 1 /1
j(Ef) = E/_l](Efer)de (574)

Depending on the value of Ef/Ey this integral may vanish. Specifi-
cally the integrand is non-zero only if ji( lies in the range

p p

Putting this together and integrating yields,

1 Eo 1
[1_Ef(l+ﬁ) <pp<

1- E; (1- ﬁ)] : (575)

E 1— E
(L+p) g~ (1-p), < <!

: _ E E
](Ef)—m (1—|—,B)—E—£(1—ﬁ), 1<E—é<% (576)
0, otherwise

If v > 1, the second portion of the emission dominates (many more
photons gain energy than lose) and we can derive a simple approxi-

mation. Let
_ Ef
X = 172E, (577)
and we find that ANoFr [2
. - orro < _
i) = St |- (578)

fiso(x)

The mean energy of the scattering photon has x =1/2 or Ef = 29%Eg
[see equation (15)].

To be more precise, we could have relaxed the assumption that the
scattering is isotropic and we would have found

f(x)=2xInx+x+1-2x% 0<x<1 (579)

Here the mean energy of the scattered photon is slightly lower
4/3%2E,.

Now we have all of the ingredients to determine the spectrum
of radination scattered off of a power-law distribution of electrons,
dN = Cy~Pdy. We have

dE
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3 Ef 72 o Ef
= = L p—2
4C0'TC/dE ( E ) v(E) [n dyy f (4721_39581)
= 30rcC22E; (p=1)/2 (582)
/dEE(”*l)/zv(E) /x2 x(P=172 £ (x)dx

X1
so we find that the scattered photons have an energy distribution
E~° where s = (p — 1)/2. This is the same index as for synchrotron
radiation. Can you say why?
This power-law distribution is valid over a limited range of photon
energies. If the initial photon distribution peaks at E the power-law
will work between 492E and 473E

Repeated Scattering

Let’s now look at the case where a photon might scatter off of the
electrons many times before it manages to tranverse the hot plasma.
Let’s define the Compton y-parameter to be

(583)

average fractional
y = | energy change per | X [

mean number of ]

. scatterings
scattering

The second part of this expression is simply related to the optical
depth. Specifically, a good heuristic is that it is Max(Tes, 72) where

or

Tes = PkesR = p—R. (584)

My

if we neglect absorption.
The first term requires a bit more thought. First let’s do the non-

relativistic limit, Let’s imagine that to lowest order the electron is not
moving, so we can use Eq. (548) to lowest order

E; Ei
Ef ~E; |1— méz (1— cos@)] =Ey {1 - mclz] (585)

where the second equality holds after averaging over cos 8. However,
the electrons have some thermal motion so we would expect that
there would be an additional term proportional to the thermal energy

of the electrons,
Ef —E; E;  akT

E; = me + me2’ (586)

Let’s suppose that the photons and electrons are in thermal equilib-
rium with each other but only scattering is important. In this case,
the number of photons cannot change. Also let’s assume that the
number of photons is small so the number of photons of a particular
energy is

dN = KE?2e E/KT4E (587)
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Because the photons and electrons are in equlibrium the average
change in the energy of a photon must be zero

(E?)  akT
(Ef—E) = —— 5+ 5(E) =0 (588)
C12(kT)* | 3a(kT)*
N mZ T m 0 (589)

so @ = 4 and we find that the fractional change in the photon’s
energy per scattering is

Ef —E; 1
TE  ome (4kT — E;) (590)

We have already worked through the ultrarelatistic case, from
equation (24), we find that

4
Ef—Ei~ 572151‘ (591)

If the electrons are ultrarelativistic, they follow the distribution in
Eq. (587), so we have

Ef—E 4 kT \2 kT \?
f le _— = —_—
Ef ~3 [12<mc2> 1 16(mc2) ' (592)

Combining these results we can calculate the Compton y—parameter

in the two regimes

4kT

YNR = WMaX(Tes/ Tezs) (593)
4kT\ 2
Yr = (n162> Max(Tes, Tezs> (594)

Essentially the Compton y—parameter tracks how the energy of a
photon changes as it passes through a cloud of hot electrons. Specifi-
cally, the energy of a photon will be E = ¢YE; after passing through a
cloud of non-relativistic electrons with kT > E

Repeated Scattering with Low Optical Depth

We saw how a power-law energy distribution of electrons can yield a
power-law energy distribution of photons. This is not too surprising.
However, it is also possible to produce a power-law distribution of
photons from a thermal distribution of electrons if the optical depth
to scattering is low. This will also give some insight about how one
gets power-law energy distributions in general.

Let A be the mean amplification per scattering,

Er 4 kT \?
= 7f ~ — 2 — R
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The probability that a photon will scatter as it passes through a
medium is simply 75 if the optical depth is low, and the probabil-
ity that it will undergo k scatterings py ~ 7% and its energy after k
scatterings is £y = AKE;, so we have

B _

A and = (596
1

The intensity after scattering looks like

I(Ex) = I(Ei)pr = I(E;)T5 (597)

To make sense of this let’s take the logarithm of the first expression in
Eq. 596 to get
In %
T
~ InA
and substitute this into the intensity formula

In T4 lnE—k_ E.\ %
I(Ex) = I(E;) exp (M) = I(E;) <Ek> (599)

(598)

where

= InT
x = A (600)
The total Compton power in the output spectrum is
AL/202 Al/szZ/Ei
p— / I(Ey)dE, = I(E))E; [/ x_”‘dx] . (601)
E; J1

If « < 1 the factor in the brackets can get really large so we find that
the amplification is important when

nL ZinA (602)
Tes
SO 5
kT
AT ~ 16 <mc2> Tes ~ 1 (603)

which is equivalent to yr 21 but Tes < 1

Problems

1. The Sunyaev-Zeldovich Effect

(a) Let’s say that you have a blackbody spectrum of temperature T
of photons passing through a region of hot plasma (T;). You can
assume that T < T, < mc?/k
What is the brightness temperature of the photons in the
Rayleigh-Jeans limit after passing through the plasma in terms
of the Compton y—parameter?
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(b) Let’s suppose that the gas has a uniform density p and con-
sists of hydrogen with mass-fraction X and helium with mass-
fraction Y and other stuff Z. You can assume that Z/A = 1/2
is for the other stuff. What is the number density of electrons in
the gas?

(c) If you assume that the gas is spherical with radius R, what is
the value of the Compton y—parameter as a function of b, the
distance between the line of sight and the center of the cluster?
You can assume that the optical depth is much less than one.

(d) Let’s assume that the sphere contains 101 M, of gas and
that the radius of the sphere is 1 Mpc, X = 0.7,Y = 0.27 and
Z = 0.03 what is the value of the y—parameter?

(e) Let’s suppose that the blackbody photons are from the cosmic
microwave background. What is the difference in the brightness
temperature of the photons that pass through the cluster and
those that don’t (including the sign)? How does this difference
compare with the primordial fluctuations in the CMB? How can
you tell this change in the spectrum due to the cluster from the
primordial fluctuations?

. Synchrotron Self-Compton Emission Blazars

(a) What is the synchrotron emission from a single electron pass-
ing through a magnetic field in terms of the energy density of
the magnetic field and the Lorentz factor of the electron?

(b) The number density of the electrons is 1, and they fill a spher-
ical region of radius R. What is the energy density of photons
within the sphere, assuming that it is optically thin?

(c) What is the inverse Compton emission from a single electron
passing through a gas of photons field in terms of the energy
density of the photons and the Lorentz factor of the electron?

(d) What is the total inverse Compton emission from the region
if you assume that the synchrotron emission provides the seed
photons for the inverse Compton emission?
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Atomic Structure

So far we have used classical and semi-classical approaches to under-
stand how radiation interacts with matter. We have generally treat
the electrons (the lightest charged particle so the biggest emitter)
classically and the radiation either classically or as coming in quanta
(i.e. semi-classically). We also derived some important relationships
between how atoms emit and absorb radiation, but to understand
atomic processes in detail we will have to treat the electrons quantum
mechanically.

In quantum mechanics we characterize the state of a particles
(or group of particles) by the wavefunction (¥). The wavefunction
evolves forward in time according to the time-dependent Schrodinger

equation
oY
h— = HY 6
th— (604)
where H is the Hamiltonian operator. If the Hamiltonian is indepen-

dent of time we can solve this equation by
¥(r,t) = p(r)e F/N (605)
where ¢ satisfies the time-independent Schrodinger equation,
Hyp =Ey (606)

where E is the energy and 1 is the wave function of the correspond-
ing energy state. We can imagine the operator H as a matrix that
multiplies the state vector ¢, so this equation is an eigenvalue equa-
tion with E as the eigenvalue and 1 as an eigenvector (or eigenfunc-
tion) of the matrix (or operator) H.
The Hamiltonian classically is the sum of the kinetic energy and

the potential energy of the particles. This realization allows us to
write the equation that the wavefunction of an atom must satisfy

h2 1 62
<MZV12EZ€22%+Z> #)(rbrz,...,rj)zo (607)
j il

i>j Tij

We have neglect the spin of the electrons, relativistic and nuclear
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effects. For most atomic states, these effects can be treated at pertur-
bations. We can simplify these equations by using
j _8 e2 —11
ag = — = 0.529 x 107" cmw and — = 4.36 x 10" "erg = 27. eV
me ao
(608)

and the unit of length and energy respectively. This gives the follow-
ing dimensionless equation

1 1 1
<ZZV%+E_ZZr-+Zr--> 1/J(r1,r2,...,rj)=O (609)
j j ]

i>j

A single electron in a central field

Let’s first treat the case of a single electron in a central field. Al-
though in principle this approximation will only apply accurately to
hydrogen, it is extremely powerful (it explains the periodic table for
example). We can imagine that when we focus on a single electron in
an atom, the sum of all the other electrons averages out to a spheri-
cal distribution. This assumption isn’t perfect for all atoms, but the
imperfections can be treated as perturbations.

As the electron gets really far from the atom, the potential ap-

proaches
Z—-N+1
% f

V(r)

where N is the total number of electrons. On the other hand near the

(610)

nucleus the potential looks like

V(r) — (611)

This effect is called shielding.
If the potential is a function of the radial distance from the nucleus
alone the Schrodinger equation is separable,

$(r,0,9) = r 'R(r)Y(6,¢) (612)
where the functions Y (6, ) are the spherical harmonics

(I —|m|)1 21 + 172

Y =Yu(6,¢) = U+ |m) ar

(_1)(m+\m\)/2pl|m\(Cose)eim(p

(613)
where P"(x) are the Legendre polynomials.

The functions Y}, are eigenfunctions of the angular momentum
operator. If the potential only depends on the radius, angular mo-
mentum is conserved classically. This means quantum-mechanically
that the Hamiltonian commutes with the angular momentum oper-
ator, and that the wavefunctions that satify the Hamiltonian also are
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eigenfunction of the angular momentum operator (L = r x p). We
have
L%Y},, = (I +1)Y,, and L,Y;,, = mYj, (614)

so the total angular momentum of the state is related to I and the
z—component of the angular momentum is related to m. Both [ and
m take on integral values with —I < m < l. The states with different
values of | have special letters associated with them we have s, p, d, f
and g for I = 0,1, 2,3, 4 respectively.

The angular eigenfunctions are orthronormal so

/dQYl*m(e/ ¢)Yl’m’(91 4)) = 011 O - (615)

The angular eigenfunctions take this form regardless of the form
of the central potential. They are simply the eigenfunctions of the
angular momentum operator.

The radial part of the wavefunction satisfies the equation

1 danl
2 dr?

I(141)
272

+ |E-V(r) - Ry =0 (616)
This equation is pretty straightforward to understand. The first term
is simply the kinetic term (like the Laplacian in the 3-D Schrodinger
equation). The next term is the energy eigenvalue. V(r) is the ra-

dial potential and the term proportional to /(I + 1) is the centripetal
potential.

Because the equation does not depend on m, the radial wavefunc-
tion only depends on . Because it is an eigenvalue equation we also
expect each [ value to have several solutions labeled by #.

As we have defined them in Eq. 612, the radial eigenfunctions have
the following normalization.

| Rt (R (r)dr = 6, (617)

Because the radial eigenfunctions for different values of I satisfy
different equations, there is no orthogonality relation for the radial
wavefunctions with different / values.

If V(r) = —Z/r, we have the following solutions
_ Zn—1-D' /5 11172041
Ry(r) = - {W} e L (o) (618)
ZZ
E, = o2 (619)
27y
p == 7 (620)

where Liljll are the associated Laguerre polynomials.
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To make things concrete some of the radial functions are

Ryg = 273%re= % (621)
7\ 3/2
Ry = (2) (2 — Zr)re=?1/? (622)
Z\%? 712
Ry = (2] =ze?/? 62
21 ( > ) 7 (623)

The electrons themselves have spin, so we have an additional quan-
tum number m; = 1 to denote the spin of an electron.

Energies of Electron States

The energy levels of the hydrogen atom at this level of approximation
simply depend on the quantum number n. For atoms with more than
one electron the picture is more complicated. The most important
effect is that when an electron is far from the nucleus the charge of
the nucleus is shielded by the other electrons, so wavefunctions that
get closer to the nucleus see the full charge of the nucleus and lie
lower in energy.

If we look at Eq. 616, we see that the centripetal term is propor-
tional to /(I + 1), so we would expect that wavefunctions with larger
values of [ typically stay further from the nucleus, so we have the
rule that for a given value of n states with smaller values of | are
more bound. N.B. This result only applies to atoms with more than
one electron, so at this level of approximation, the 2s (n = 2,1 = 0)
and 2p (n = 2,1 = 1) are degenerate. Actually, it is relativistic effects
that remove this degeneracy.

Sometimes this shielding effect is stronger than the change in the
principal quantum number so we have the following ordering of
states

15252p3s3p[4s3d|4p[5s4d]|5p[6s45d|6p[7s5f6d|7p ... (624)

The energies of the levels in brackets is really close so sometimes the
filling order varies from atom to atom because of the Hund’s rules
below. I have used the letters s, p,d, f,g... to denote = 0,1,2,3,4...
of the single electron states.

A second important fact is that because electrons are indistinguish-
able, the wave function of more than one electron must be antisym-
metric with respect to interchange of any two electrons (within the
axioms of non-relativistic QM it could have be symmetric, but one
can prove in relativistic QM that the wavefunction must be antisym-
metric — the spin-statistics theorem).

This has several important consequences. Two electrons cannot
occupy the same state. We can label the states by their quantum
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numbers, n,l,m;, ms wherel < n, -1 < m; < I, mg = :I:%. This is
quite important. If electrons were bosons (particles that can occupy
the same state), atoms would not have the structure that they do. All
of the electrons would simply drop down to the lowest energy state
available.

Furthermore, we generally try to solve the multielectron problem
by assuming that the wavefunction of all the electrons is the antisym-
metrized product of single electron wavenfunctions,

ug(r1) ua(ra) - up(ry)
D) \/1[\7' up(ry)  up(ra) - up(en) (625)
ug(ry)  u(ra) - ug(ry)

This is called the Slater determinant.
When you substitute this into the multi-particle Schrodinger equa-
tion you get an equation for each electron state (the Hartree-Fock

equations)
Fu;(ry) = Eju;(ry) (626)
where X
_pno_ze
F= o . + V(ry). (627)

where the potential V has two terms, one is called the direct interac-
tion term and the other is called the exchange interaction term.

Vin) = ¥ [J(0) + (~1)°Kj(m)] (628)

)

where S = m;; + mg; and

Ji(m)ui(r) = [/ Pryu’ (rz) (:122) Mj(rz)} ui(ry)  (629)
K = [ [P (2wt ) @0

The term J; is simply the potential that one electron in the state i
feels from another electron in the state j. The K; term has no classical
analogue.

Let’s try to understand what this means. When we solve this set of
equations we imagine that all of the other electrons are fixed and we
are try to solve for a single extra electron. Let’s imagine that we only
have two electrons. The total energy of the first electron including the
effect of the second electron is

3. % P% e? S
[ #ruim) =2t () + (C)Ka(m) Jua(e) (630)
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Both | and K are positive, so if S = 1 the system has slightly lower
energy.

yIn multielectron systems this result holds for any pair of elec-
trons, so we get two rules of thumb (called Hund’s rules) that all other
things being equal

1. States with the spin of the electrons aligned have lower energies,
or states with larger total spin (S) lie lower in energy.

2. Of those states with a given spin, those with the largest value of L
tend to lie lower in energy.

The second rule comes about because a large value of L implies that
the electrons are orbiting the nucleus in the same direction which
reduces the value of the | integral.

These two rules order electron configurations (lists of the values of
n and [ for a set of electrons: e.g. 4p4d) into terms with equal energies
labels by the total orbital and spin angular momentum (L and S) e.g.
3F. The superscript is the 25 + 1, the multiplicity of the spin states
and the letter is the value of L using the rules described earlier.

Perturbative Splittings

Spin-Orbit Coupling

There are various fine structure splittings enter due to relativistic
corrections. The simplest of these is the spin-order coupling. Let’s
imagine that we move into the frame of the electron, we are moving
through an electric field so there is a magnetic field

1 1 du
B=—--vxE= —

v mecr dr (632)
where U(r) is the electrostatic potential. The electron has a magnetic
moment of

- _ £
=-_ (633)

The magnetic energy of the electron in the field is

1 1dU

He = —>—s-1-22
0T 2m2e2” Ty dr

(634)

Notice that this is one-half of what you would expect. This is due

to a relativistic effect called Thomas precession. More important to
notice is that the spin-orbit term vanishes as ¢ — oo, so it is indeed a
relativistic correction. For a single electron because dU /dr is positive
we find that if s||1 the energy of the state is higher so lower values of
j the total angular momentum have lower energies.
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For hydrogen we have

18[2s1,22p1/2]2p3/2 (635)

where the states in the brackets are still degnerate.
In multiple electron systems we find that

Hs =¢S-L (636)

where the value of { depends on the configuration.
Let’s focus on states with the same values of S and L but different
values of J. We know that

P=(L+S)-(L+S)=L2+S*+2L-8S (637)
SO we can write

Hip = 28 (12 12— 82) = 2C[(+1) ~ L(L+1) ~S(S + 1)

(638)
so if L and S are fixed we have

Ejp1—Ep=C(J+1) (639)

The value of C can be positive (shells less than half-full) or negative
(shells more than half-full). Notice that we recover the result for
hydrogen; the 2p shell is clearly less than half-full.

We can make sense of the situtation of a nearly full shell but real-
izing that a completely full shell is spherically symmetric so a nearly
full level acts as if it has a few holes whose charge and magnetic
moment have the opposite sign of an electrons.

Zeeman Effect and Nuclear Spin

The Zeeman effect is the splitting of atomic levels on the basis of the
value of the total angular momentum in the direction of the mag-
netic field m;. This is why the quantum number m uses the letter m;
it stands for “magnetic”. The picture is similar to the spin-orbit cou-
pling except we are looking at the interaction of the total magnetic
moment of the atom with the magnetic field

Ug=—"B (640)

S B ()14 (%) } (641)

If we average over the precession of the magnetic moments around

where

the imposed magnetic field we get the following splitting

1 [(ehB
Up = 5 (mc> gMy (642)
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where
J(J+1)+S(S+1)—L(L+1)

2](J+1)
A related effect that is really important astrophysically is that the

§(,L,S) =1+ (643)

nucleus itself has a magnetic moment

e
UN = 8m1 (644)

that can interact with the magnetic moment of the electron. I is the
total angular momentum of the proton and that total angular mo-
mentum of the systemis F =] +1

We can have transitions where the orientation of J changes with
respect to I so we have a splitting depending on the value of M;.

An important case is the ground state of hydrogen which is a 25,
term. The proton has spin 1/2 so we can have F = Oand F = 1.
The splitting between these two states corresponds to a frequency of
1420 MHz or A = 21 cm.

It is simplest to see this effect by considering the nucleus to be sta-
tionary and averaging the effect of the electron over its wavefunction.
There are two separate effects the interaction of the magnetic moment
of the nucleus with that of the current induced by the electron orbital
angular momentum and the interaction between the two magnetic
moments themselves.

The magnetic field produced by the orbiting electron is given by

1
B = —2#373 (645)

where r is the distance between the electron and the nucleus and 1 is
the orbital angular momentum of the electron. The situtation for the
intrinsic magnetic moment of the electron is a bit more subtle. The
field of a magnetic dipole is given by

B= L B(u-0ip. (646)

However this is not the entire picture because there is the possibility
that the electron and the nucleus lie right on top of each other. Let’s
imagine that the magnetic moment of the electron is produced by a
small ring of current of radius R and integrate the total magnetic flux
passing outside the ring through the plane of the ring according the
formula above

© 1
Doutside = B-dA=yu /R r—327rrdr = Zﬂ% (647)

JOutside

and the flux clearly points in a direction opposite to the magnetic
moment of the electron. Now the total flux through the entire plane
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that contains the current ring should vanish (the magnetic field is
divergence free), so within the ring we have

Prnside = . Bnside - dA = BnR? (643)
JInside
and
B=21 (649)
R3"
Now let’s integrate this mean field over a small sphere of radius R to
yield
- 87
BdV = —pu. 650
- o (650)
This yields a correction to the dipole field called the Fermi contact
interaction,
1 A 81
B =5 [3(u-1)t—ps]+ 5 pd’(x). (651)

A second way to obtain this result is to take the expression for the
vector potential of a point magnetic dipole
_pxr
A= 3 (652)
and calculate the magnetic field, B =V x A.
Combining this result with the orbital contribiution yields a com-

plete expression for the hyperfine splitting, since the energy of a
magnetic dipole in a magnetic field is given by U = —pu - B,

(r-pe) (r-py) e
2

L- .
4 me~ PN

(653)
One can observe that the first term vanishes for states with [ > 0 and

871 1
Hips = =, N8> (1) + 5 |pro - pin =3

the second term vanishes for [ = 0.

Thermal Distributions of Atoms

In thermal equilibrium the number of atoms in a particular state is
proportional to ge PF where 8 = 1/kT and g is the statistical weight
or degeneracy of the state (for L — S—coupling ¢ = 2(2] + 1)), so we
find that

N  _gp
N; = {8ie " (654)
where N is the total number of atoms and U is a normalization factor
U=y ge P (655)

We already run into a problem. Atoms generally have a certain ion-
ization energy (for example, hydrogen has 13.6 €V) but there are an
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infinite number of states between the ground state and the ioniza-
tion level so e~PFi approaches a constant for large i and g; typically
increases so U will diverge.

In practice this is not really a problem for two reasons. First, for
temperatures less than 10* K only the ground state is typically pop-
ulated so it is okay to take U = gp. Second is that atoms don’t live
in spendid isolation. The size of the highly excited states of atoms

2

increases as 1~ so we only have to sum over the states until we reach

7 1/2
28021 ~ N3, s (ao> N7V, (656)

Ionization Equilibrium - the Saha Equation

Let’s consider a electron and ions in the ground state in equilibrium
with neutral atoms also in the ground state

ANy (v) e8¢y E;+ imev?
No % ep |~ (657)
where 2dx,dxydxzdprdpad
x1dxodx
Qe = 14X2 ;3 p1ap2aps (658)

and v is the velocity of the electron.

The volume dxjdx,dx3 contains a single electron, so dxjdxydxz =
N, 1. Furthermore, if we assume that the electron velocity distribu-
tion is isotropic we can derive

ANy _ 8mmg gy Ei+3me0?| 5
No ~ 7 Nego exXp |~ |7 dv (659)
Let’s integrate over the electron’s velocity to get,
3/2
NS_NE _ 27ngkT / @e*EI/kT (660)
N() h2 go

We know that the ratio of the number of atoms in any state to those
in the ground states is simply go/U(T), so we can get Saha’s equation

3/2
N+Ne _ (27ngkT) 2U+(T) e_EI/kT. (661)

N h? Uu(T)
We can also derive a Saha equation that connects any two stages of
ionization,

3/2
Nj+1Ne _ (27TmekT) / 2Wi(T) g, ke

N, 0 u;(T)

(662)

In astrophysical contexts, there is generally a mixture of different
elements. Some elements such as the alkali metals have very small
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values of Ej so they may dominate the number of electrons in the
gas when more abundant elements such as hydrogen are completely
neutral.

A bit of nomenclature: HI is neutral hydrogen, HII is ionized
hydrogen, Fe XXVI has a single electron, and Fe I has all twenty six.
Don’t confuse HII with Hp.

A Practical Aside - Orders of Magnitude

One of the most important tools that a card-carrying astrophysics
has is the order of magnitude estimate. The order of magnitude
estimate combines the lack of rigour of dimensional analysis with the
lack of accuracy of keeping track of only the exponents; this makes
multiplication in your head easier!

The first part of the tool is the knowledge of the various constants
of nature in c.g.s units but you only need to keep the exponent in
your head. A glance at Table 2 shows that some of the physical con-
stants are easier to remember than others, but one can exploit the
relationships between them a remember only a few key numbers to
obtain the the rest.

117



118 JEREMY HEYL

Name Value Units Exponent
Mathematical Quantities
T 3.14 0.5
Arc Second 4.86 x 107° -5.5
Astrophysical Quantities
Mass of Sun, Mg 1.99 x 10% g 33.5
Luminosity of Sun, L, 3.83 x 103 erg s71 33.5
Radius of Sun, R, 6.96 x 1010 cm 11
Mass of Earth, Mg, 5.98 x 10%7 g 28
Radius of Earth, Rg 6.38 x 108 cm 9
27mRe 40,000 km 4.5
Year 3.16 x 107 s 7.5
Parsec 3.09 x 1018 cm 18.5
Astronomical Unit 1.50 x 1013 cm 13
Physical Constants
Speed of light 3.00 x 10%0 cm s~ 10.5
Newton’s Constant G 6.67 x 1078 dyn cm?g—2 -7
(2m)?2 AU Byr2 M ! 1.5
Thomson cross-section, o 6.65 x 1072 cm? —24
Electron mass, m, 9.11 x 10-28 g —27
511 keV ¢ 2 2.5
Proton mass, m, 1.67 x 1024 g -27
938 MeV ¢ 2 3
Electron-scattering opacity 0.4 cm 2 g1 -05
Ke = o7/ Mp
mp/m, 1836.109 3
Planck constant, h 6.63 x 107% ergs —26
Reduced Planck constant, 1.05 x 10~%7 erg s —27
hh=nh/(2m)
fic 3.16 x 10717 erg cm -165
Fine structure constant, 1/137. -2
a = e/ (hc)
Electron Compton Wavelength,  3.86 x 10711 cm -10.5
Ae =T/ (mec)
Bohr radius, ag = A/« 0.529 A =10"%cm -8.5
Boltzmann constant, kg 1.38 x 10716 erg K71 —16
Stephan-Boltzmann constant, ¢~ 5.67 x 107>  erg cm 257 1K~ —45
Electron volt, eV 1.60 x 1012 erg -12
11600 Kk,* 4

Table 2: Common Physical Constants in
c.g.s.
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Problems

1. Particles in a Box

A reasonable model for the neutrons and protons in a nucleus is
that they are confined to a small region. Let’s take a one-dimensional
model of this. The potential is V(x) is zero everywhere for 0 <
x < I and infinite otherwise. This means that
n? d2y

— oy = Enpif0<x <l (663)

and i = 0if x < 0 or x > [. What are the energy levels of this
system?
2. Hyperfine Transition - Ballpark

Calculate the energy and wavelength of the hyperfine transition
of the hydrogen atom. You may use the following formula for the
energy of two magnets near to each other

E=-12 (664)

We are looking for an order of magnitude estimate of the wave-
length. I got 151 cm which is in the ballpark.

3. Hyperfine Transition - Precise

Calculate the energy and wavelength of the transition of hydrogen
with the spin of the electron and proton aligned to antialigned.
Assume that the electron is in the ground state.

4. Density and Ionization

Calculate the ionized fraction of pure hydrogen as a function of
the density for a fixed temperature. You may take U(T) = go = 2
and UT(T) = gJ =2






Radiative Transitions

Perturbation Theory

After we figured out the wavefunctions for the hydrogen atom, we
examine the energy states of atoms with more than one electron.

We didn’t resolve Schrodinger’s equation, but rather we used the
spherical harmonic solutions to understand how various additional
terms like the interaction between the electrons would affect the
energies of the states. This powerful technique is called perturbation
theory (specifically time-independent perturbation theory).

Through this process we built up a picture of the structure of
atoms from two simple ideas: Schrodinger’s equation and that the
wavefunction of a bunch of electrons is odd under interchange of any
pair of electrons. Our atoms are elegant, we know their energy levels,
angular momenta . ..but they never do anything.

To understand how atoms change with time we could use the
time-dependent Schrodinger equation, but like for the problem of the
energies of multi-electron systems this is probably too hard and not
really worth the effort. On the other hand, maybe there is something
called time-dependent perturbation theory that will do the heavy-lifting
for us.

Let’s start with the time-dependent Schrodinger equation and add a
small extra time-dependent term in the potential.

oY

ih? = HY + AH'(r,t)Y (665)

If the AH'(r,t) bit weren’t there we would know the solutions:
¥(r,t) = p(r)e (666)
such that
Hy = Eip. (667)

Solutions to equations like Eq. 667 form a complete set. This means
that you can use a sum of them to represent any function, so let’s
imagine that the real solution to Eq. 665 is the sum of the solutions to
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Eq. 666 but let’s allow the coefficients to be a function of time

=YY Ap(t)Ayj(x)e B (668)
j 1=0
and substitute into Eq. 665
© | {E; dA;(t) :

, i jl I —iEjt/h

zh}Zl;O —?A]-l(t) + T Api(r) e
=YY [Ej+ AH (5, 1) Ay (x)e B (669)
j 1=0

To make some progress we multiply both sides by lpji(r) and inte-
grate over all space. We remember that the wavefunctions ¢ are
orthonormal so that the integral of a product of two wavefunctions
over all space is J;;.

0 E dA s (t
th[ iy +7ﬂ()

Al e~ iEst/h
dt

2?

N (el Ej+ Ay | H (x,t Itp]] e Ei{6ho)

- i Al
=0
where we have used the Dirac notation
(Wl H (5, 0) ) = [ dxyH (5, )9). (672)

The integral is also over the spin coordinates if necessary.

Ap(t)Epe B4 Y Ajz(f)<llﬂf|H'(rff)|l/Jj>€iEft/h] (671)

Now we look at this summation in powers of A. First let’s do A°

lh[ ZEf fo(t)+dAfO(t)

dt e*iEft/Fl _ Afo(t)EfefiEft/Fl. (673)

This equation implies that

dAg(t
100 0 Ago(t) = Ago(0) (679

Let’s now look at the Al term

h dt

h e*iEft/l"l — Af] (t)EfeflEft/l"l +

Y Ap(O) (s H' (x, ) |gpe B (675)
]

Canceling terms and rearranging gives

dAfl ZA (0) (s |H' (x, 1) [g;)e " EiEAYE - (676)
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Let’s assume that H'(r,t) = FH'(r)(¢'“! 4+ ¢~!) for t > 0 and that at
t=0, Ajo(O) = (5,']'

B 1 , e—i[Ei—Ef—hw]f/h -1 e—i[El‘—Ef-‘rhw]t/h -1
Apn() = Sy H ()l [ e A

(677)
Let’s calculate the probability that the atom is in the state f after a

time £,

2(1 — cos(wy; — w)t)

An(DAn() = }L|<¢f|H'<r>|wi>|2[

W (wpi — w)?
t) — 4 2(1-— i+ w)t
4cos(wt)cos(w )2 cosz(wf) ( 2cos(wf zw(%’/)%)
Wy —w I (wysi + w)

sl @) P sin® [ —olt] |
2 (wfi — w)?

cos(wt)

cos(wt) — cos(wy;t) sin’ B(sz‘ —i—w)t}
T {q79)
w2, — w? (Wi + w)?
fi fi

where wy; = (Ef —E;)/h.

We see that if Ef — E; ~ hw, then AJ";l Ay is big and the first term
dominates if tw > 1. This corresponds to absorption of radiation.

The frequency range over which the transition probablility is large is
Aw =~ 47/t.

Let’s imagine that the perturbation H'(r) is due to a quasimonochro-
matic radiation field such that the phases for different frequencies are
not correlated and that the amplitude of H/,(r) is constant over a fre-
quency range much larger than Aw. We can integrate the transition
probability (keeping only the dominant first term) over all frequen-

cies to get
\ o | (s [ HG (1) [ 2
Ap(H)An(t) = ot ! " (680)
so we get a transition rate of
H/ ; 2
SR I LAGIT 650

2 K2

The Perturbation to the Hamiltonian

The Hamiltonian of an electron in a external electromagnetic field is

given by
1 eA\?
H = 2m<p_c) + e (682)
2 242
_ P e A
H = o ch p—|—2mc2—|—e¢ (683)

123



124 JEREMY HEYL

To go from the first to the second equation we have assumed that
V- A = 0, the Coulomb gauge, so that the momentum commutes
with the vector potential.

242

e ecA
H=-°A.

mc p+2mc2

+ed (684)

In the Coulomb gauge, V2¢ = 47tp but because there are no other
charges around we can take ¢ = 0, so we are left with
e e?A?

H=-°A. .
me s P e

(685)

The second term is generally smaller than the first for weak waves, so
let’s focus on the first term. We know that

10A W
E(r, t) = R —z?A (686)
SO we can write
/ __.ec iker ,—iwt
H'(r,t) = L— (Ee e ) Y (687)

where we can expand the exponential to yield
M =14k 14 (688)

If we take the electric field to be constant in space (the dipole approx-
imation), it is handy to write

H'(r)=E-d (689)

where
. e

This expression is generally applicable. Classically however, the
dipole moment of a charge is er. It would be nice to get a similar
expression for the quantum mechanical system.

We can proceed in several ways. We intend to focus on the electric
dipole approximation which is appropriate if v < c. If one looks at
Eq. 683 one sees that if p < mc, the dominant term in the perturba-
tion is

H =ep+ O (g) (691)

and we could write ¢ = E - r and get
d=er. (692)

This derivation is not really valid. However, the expression above
does turn out to be useful in particular situations. Let’s first prove

n* n*
(tHo— Hon)p = —1 V2P + 1V (0)p + 5 V2 (1) — V(1)r(693)



- _r%v%/} +5. V- (pVr + V) (694)

— _rzrl;vzlp + ZF‘; (vq; Vr+ V2P + V- V@s)

- T ) e

_ ij —ilpy (697)
and substitute this result into Eq. 692 to get

($rldlpi) = —2—(yIrHo — Horly) (698)

Let’s suppose that Hypy = Efypr and Hoyp; = E;i; (i.e. they are
eigenstates of the unperturbed Hamiltonian) we have
e
(Peldly;) = —%(Ei — Ef)(¢rlrlvpi) = e(wrlr|;) (699)

SO
d=cer (700)

when and only when d operates on two eigenstates of the unper-
turbed Hamiltonian.

Dipole Approximation

Let’s assume that H/,(r) = ¢E,, - r. This implicitly assumes that the
wavelength of the radiation is much bigger than the atom, then we
get

7l B 9

W(i—f) =1 . = ﬁEﬁrw\difF (701)

where

g = & (1 lxlga) P+ [ rlylgn) 2+ gslzlg)2)  (ro2)
The energy density of the field is

3E2
1y = (277) 8;‘1"“ = 471]?”. (703)
50 2 6w
Y = T3 (704)

The factor of threes arise because we assume that the radiation is
isotropic so the value of E2 is typically one third of E? Using this in
the transition rate gives

1 872 |djf|?
W(Z — f) - T hlzfc

We can write this result as an Einstein coefficient

82 |dig]?
if - T hZC

I (705)

(706)
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Oscillator Strengths

A classical harmonic oscillator driven by electromagnetic radiation
has a cross-section to absorb radiation of
Wt

o(w) =or 5 (707)

(w? ~ wf)” + (w51)

If we integrate this over all frequencies around the resonance we

obtain , y
0 7Te ical Vi
dv =" = Bglassmali
/0 o(w)dv mc if 47 (708)
SO -
. 47tce
classical __
By ™ = hugme (709)
We can write the Einstein coefficients in term of this classical one
Bif 2m 2
fif - Blgjl[assical - 3h2gi€2 (Ef - Ei) Z|dlf| (710)

Here we have included the possibility that the lower state has a g¢-
fold degeneracy and we have summed over the degenerate upper
states.

In Eq. 681 the final term could be important if the E; — Ef ~ —hw
this corresponds to stimulated emission of radiation. Except for the
degeneracy factors for the two states, the Einstein coefficients will
be the same, so we can define an oscillator strength for stimulated
emission as well,

2m ( 5
if=———>|E —E ) d; 11
flf 37’12‘071'6’2 i f 2| zf| (711)
Here E; > Ef so the oscillator strength is negative.
There are several summation rules that restrict the values of the
oscillator strengths,

ann’ =N (712)

where N is the total number of electrons in the atom and the sum-
mation is over all the states. One must include transitions to the
continuum in this summation. If there is a closed shell of electrons
we can focus on just the g electrons in the open shell to get

ann’ =49 (713)

where the sum is over transitions that involve the outermost elec-
trons. We can also separate the emission from absorption oscillator
strengths

Z fonr + Z far =14 (714)

n' ,El >E, n' ,Eh<Ep



Because the second term is for stimulated emission. All of the values
of f,,» are negative so

Z fnn’ > q. (715)

n' ,El>E,

Selection Rules

We can determine the selection rules for dipole emission by examin-
ing the defintion of the dipole matrix element

dg; = e/h w}erlpid% (716)
]

where j sums over the electrons in the atom. First let’s calculate
the dipole matrix element after a parity transformation that takes
r — —r. Unless ¢¢ * §; is odd under the parity transformation, the
integral will vanish, so the parity of the initial and final states must
be different. The parity of a particular configuration is (=1)X% where
l; are the orbital angular momentum quantum numbers of each elec-
tron.

We can also prove that only one electron can change its state dur-
ing the transition, the one-electron jump rule. If we examine the integral
in detail, especially the spatial part we have

Al =41,Am =0,%1 (717)
for the jumping electron. For the total configuration we have
AS=0,AL=0,£1,A] =0,+1(except ] =0to ] =0) (718)

The first condition holds because the dipole operator does not couple
to the spin of the electrons and the final condition exists because a
photon carries away one unit of angular momentum.

Transitions that follow these rules are know as allowed and they are
written using the name of the species and the wavelength. For exam-
ple, HI 1219A is Lyman-a. On the other hand transitions that don’t
follow these rules can proceed through magnetic dipole or higher
order multipole interactions. These transitions are called forbidden
and are designated by [OII] 3727 A. The transition between | = 0 and
J = 0 cannot proceed through the emission of a single photon but
through the emission of two photons. An example is the relaxation
of the 2s state of to the 1s which has a lifetime of about 0.1 s (really
slow) compared to ~ 1ns for the 2p to the 1s state.

Bound-Free Transitions and Milne Relations

We have covered bound-bound transitions and free-free transitions
(Bremmstrahlung). We would also like to understand bound-free
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transitions or ionization. In this case we have to calculate the tran-
sition rate for the atom to ionize with the freed electron to be in a
particular range of momentum travelling

dw = 3h2 P { . dede}f (719)

in the dipole approximation.
We want to calculate an ionization cross section such that

dN
dw = dam (720)
where dN/(dAdt) is the number of incident photons per unit area

per unit time. We know that

dN A Jv
dadt =~ T = M ann ™ (721)
Let’s divide Eq. 727 by Eq. 728 to obtain
87r2 hw o[ dn

We know that by conservation of energy that the electron final mo-
mentum must satisfy

_ pp
hdw = ot (723)

Furthermore, we know that if the electron is localized to a volume V,
the density of states is
dn %

Combining these results yields

do _ pVmw
dQ  emch®

|dif > (725)

Let’s calculate the cross-section for a photon with fiw > 13.6Z2 eV
to ionize a hydrogen-like ion from the ground state. Because the
energy of the outgoing electron is much greater than the binding
energy of hydrogen it is safe to assume that

Py = \%el"“ (726)

where q = p/h.
The initial state is

1/2
ZS —Zr/a
Yi=|—3 e 0 (727)



The dipole operator is

ie
d= mwifp -

hVs. (728)

mw;j f
We cannot use the simpler expression d = er because the final plane
wave is not strictly an eigenstate of the Hamiltonian.

Let’s apply it to the initial and final states

eh 1 2\
. — —Zr/aov iq-r 43
dif mwlf VvV (na0> / ¢ e (729)
iehq 1 —Zr/ao iqr 43
= - — eIt x o
mwis ﬁv< (730)

zdr/ due™ 1 e= 2/ (y31)

o
- (5)
)
Z)

= —;jzl}j(\/lv ( rdre 21/ gin gr (732)
__iehq 1 87m(3)Z (733)
mwis \/V \ naj Z2+qa)
Let’s substitute the value of w;s
Z2€2 thZ 62 thZ
hw;ir = =72
wif 2ag 2m  2ag + 2m (734)
to get
1 [z a3Zeq
dif = —lemi—= (3) T (735)
VV A\ mad (22 + ¢2a2)
and
-6
2567 (Z\° [ 22 2567 [ Z\°
2 — 2.2 £ 410
|dif| 7 <a0> <a0+q> e°q v (ao) q

(736)
Using this in the formula for the differential cross-section and multi-

plying by 47 gives

16v2e*nZ5
3m’7/2w7/2caj B

(21)¢)9/27'£Z507/2
3118/20.)7/2

Opf = (737)
Had we used the classical dipole operator d = er we would have
twice the true value of d; 5 and four times the cross section, so the
difference is not subtle.

We can improve upon the assumption that we made that the elec-
tron’s energy is much greater than the ionization energy by using
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Coulomb wavefunctions which are solutions to the Schrodinger equa-
tion for positive (i.e. continuum) energy values.

The total cross-section for a photon of frequency w to ionize an
electron from a hydrogenic atom in state  is

64n Wy \3
Opf = <3\/§Zg2> aa (;) (738)

where ¢ is a Gaunt factor and

a’mc? 72

Wy = o2 (739)

More interesting is the fact that you can relate the cross section
for ionization to that of recombination, through the Milne relations.
These are derived using the principle of detailed balance simliar to
the derivation of the Einstein relations.

If we assume that the photons are in equilibrium with a set of
ions and atoms we can use the blackbody formula for the photon
distirbution and the Saha equation for the ions. Let of;(v) be the
cross section for recombination for electrons with velocity v, then we
have a recombination rate per unit volume of

N4 Neogpf (v)vdo (740)

where f(v) is the Maxwellian velocity distribution, N is the electron
density and N is the ion density.
The ionization rate is given by

4
WNn(fbf(l — e/, dy (741)

where N, is the number density of neutrals and the factor in front of
the blackbody function accounts for stimulated recombination. These
two rates must be equal in equilibrium so we have

Tbf _ N+N€ehv/ka(U)C2h

T Ny 8mrmv2 (742)
where we have used hv = %mvz + E; to eliminate dv and dv.
We know that
3/2
NTN, _ 27tmekT 2U(T) o—E1/KT (743)
N h2 u(T)
and , )
m \3/2 , mo
=4 [ _
f(o) =4n (27rkT) v”exp ( 2kT) (744)
Putting all of this together give us the Milne relation:
Ob m2c?v?
2L = §ed+ (745)

U'fb B v2h2 Zgn.
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Line Broadening Mechanisms

There are two types of broadening mechanisms. The first type is
called inhomogeneous broadening which results from different atoms
experiencing different conditions so the energy of the transition pho-
tons that we observe is different. Some examples of this are rota-
tion, random bulk motions, thermal motions and varying magnetic
field. In all but the last of these examples the energy of the photon is
shifted due to the Doppler effect.

The profile function is

1 (N2 A2
V) = Avoﬁe o/ (746)
where
vo [ 2kT 172
Avp = 70 ( - +é‘2) : (747)
a

The T is the temperature of the gas and m, is the mass of the atoms.

The second type is called homogeneous broadening. Here each atom
emits photons over a range of energies inherently. The main source
of homogeneous broadening is that the atom has a finite lifetime or
it can only emit phase-connected wavetrain for a finite time. Both of
these effects result in a Lorentz profile for the line of the form

- T/472
4)(1/) - (1/ . VO)Z + (F/47’[)2 (748)
where
L= v+ 71+ 2Veol- (749)

The first two terms are the lifetime of the upper and lower states and
Veol is the frequency of collisions. For example,

Yu = Z (Aun + Bun]v) . (750)

n'<n

The Gaussian convolution of the Lorentz profile profiles has a
special name: the Voigt function

2

T ) a2 4 (u—y)? 73
and the combined profile is
¢(v) = (ovp) ™'/ H(a,u) (752)
where
= andu =210 (753)

4tévp Avp
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Problems

1. Lifetime

Derive the lifetime of the n = 2,1 = 1,m = 0 state of hydrogen to
emit a photon and end up in the n =1,/ = 0,m = 0 state.

2. Hydrogen-Like Absorption

How much energy does a photon need to ionize the following
atoms by removing a K-shell electron?

Hydrogen, Helium, Carbon, Oxygen, Iron

Using the formula that I derived in class, draw an energy diagram
that shows the total cross section for one gram of gas as a function
of energy between 10eV and 10keV. It would be great if you used
the initial expression in Eq. 736 for the dipole matrix element
rather than the final answer given by Eq. 737.

Consider that the mass fraction of the different atoms are hydro-
gen (0.7), helium (0.27), carbon (0.008), oxygen (0.016) and iron
(0.004).



Molecular Structure

We are to deal with the structure and energetics of molecules in
a very heuristic fashion, deriving the energies and importance of
various transitions.

The simplest molecules are the diatomic molecules such as Hj,
CO, etc.. They are also among the most abundant in the universe, so
we are going to restrict our attention to these two-atom molecules.

The Born-Oppenheimer Approximation

The problem of understanding the structure of molecules initially ap-
pears formidable. At a basic level the equations are no longer spheri-
cally symmetric. This is a real difficulty. For diatomic molecules there
is still a rotational symmetry about the line connecting the two nu-
clei. The key simplification is that the electrons whip around a lot
faster than the nuclei, so one can approximate the sitution by assum-
ing that the electrons sit in a particular eigenstate of the potential
with the two ions fixed. The ions on the other hand experience an
effective potential as a function of their separation that includes the
effects of the electrons (whose state we have already calculated). This
in the Born-Oppenheimer approximation.

By looking a moleculle in terms of the electrons and the nuclei
separately, we can estimate the energies of the various transitions of
the molecule. Let’s assume that the ions are separated by a distance
a ~ ag. By the uncertainty principle the momentum of the electrons
will be on the order of fi/a, and the typical energy of electronic tran-
sitions will be

2 12 ,
Eelec’\‘%"‘w"‘“ me” ~1eV (754)
or the visibile, near-infrared and ultraviolet.

The nuclei are separated by a distance of order a as well and the
typical energy change from moving nuclei over a distance 4 is the
electronic energy (Eq. 754), so we can define a spring constant for the



134 JEREMY HEYL

nuclei
2
Eelec h
~
a2 ma*

k ~ (755)

yielding a vibrational energy corresponding to changes in the dis-
tance between the nuclei of

1/2
k 1/2 hZ ma1/2 hZ
Eyip ~ hw = h (M) =h| ] = (M> s ~0.01-0.1eV.

(756)
These energies fall in the infrared. Finally the molecule can change
its rotational state. The angular momentum of the molecule is quanized
in units of 7 so we would expect transitions with energies of the or-
der of
WL(L+1) HL(L+1) m I

=y
21 Ma? M ma? (

L+1)~1073eV.

(757)
Because the typical energies of the various transitions are well sepa-

Erot ~

rated we can to a good approximate consider each of them separately,
justifying the Born-Oppenheimer approximation.

The Hi Molecular Ion

An example which illustrates much of the physics of diatomic molecules
is the hydrogen molecular ion HJ . The Schrodinger equation for this
system is

h? v2 h? ez e e

- — Vi — — — 4+ = —E|y(r,R) =0 8
2 R 2 T T TR P(r,R) (758)

#ap is the reduced mass of the two protons, M /2 and p, is the re-
duced mass of the electron relative to the two protons ~ m,. r4
and rp are the distances between the electron and the two protons
and R is the distance between the two protons. The key to the Born-
Oppenheimer approximation is first to hold R fixed and neglect the
first kinetic energy term and solve for the electronic wavefunction

Xj(tR).
—5—Vi————+ = —E(R)| xj(tR) =0 (759)

where the semicolon in the x; function encourages us to think of R
as a parameter. We try various values of R and solve for )(j(r; R) each
time. The solutions to this equation are called molecular orbitals.

After the electronic wavefuntion is calculated as a function of R,
we can determine the proton wavefunction. The proton wavefunction
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satisfies the one-body Schrodinger equation

12
B 21 4B

Vi +Ej(R) —E| Fi(R) =0 (760)

Eq. 759 is generally to difficult to solve directly, so one generally
picks a trial wavefunction and calculates the value of the energy for
this function. One can prove that the ground state eigenvalue E of the
Hamiltonian H

E < (p[H[yp) (761)

where ¢ is any normalized wavefunction. This is the basis of the
Rayleigh-Ritz variational method.

For the case in point, we will guess that the wavefunction of the
electron is a linear combination of atomic orbitals (LCAO), specifi-
cally the 1s state of hydrogen.

Xe = \1@ (16(ra) + t1:(r5)) (762)
and
X = % (16(ra) — P1s(78) (763)

The g and the u refer to gerade (even-parity) and ungerade (odd-
parity) wavefunctions.

We can substitute these trial wavefunctions into the Hamiltonian
in Eq. (759) to find an upper limit on the value of E;(R). We obtain

B e (14 R/ag)e 2R/%0 4 [1 — (2/3)(R/ag)?]e R/
Egu(R) = Eis + R 1+ [1+R/ag+ (R/ag)?/3]e R/a0

(764)
where the upper (positive) sign corresponds to the gerade configu-
ration. Fig. 19 depicts the energy of the electronic configuration and
Fig. 20 shows the electron density for the two orbitals. We see that
the only the gerade state binds in the case. From the picture of the
electron probability density we can see why this is the case. In the
gerade case, the electron lies in between the two ions so it can shield
the charge of one ion from the other. In the ungerade state because it
has odd parity, the electron cannot lie on the midplane between the
ions so the shielding is much less effective.

For molecules with more than one electron, we find that the
Hund’s rule for the total spin of a system is reversed for molecules.
The states with even parity (gerade) tend to bond. Because the spatial
wavefunction is even with respect interchanging the electrons their
spins must be antiparallel.
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0.1

—0.1

Figure 19: E, (upper curve) and Eg
(lower curve) for Hy . The dashed curve
is a well-fit Morse potential for Eg(R).

Figure 20: [¢p¢|? (left) and |, |? (right)
for Hz+ with R = 2ag.
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Molecular Excitations

The energy states of molecule may be excited in three ways: electronic,
vibrational, and rotational. Let’s start with the least energetic of these.
We can get a first-order understanding of the rotational states of a
molecule simply looking at the Schrodinger equation for the ions
l 12 < 2 L(L+1)

F

> FEMR) —E|ER) =0 (765

“2uap \dRZ~  RZ

where we have solved the angular wavefunction in terms of spher-
ical harmonics like we did for hydrogen. In Fig. 19 we saw that the
function E;(R) varies over atomic distances ~ 9. On the other hand
because the mass of the ions is much larger than that of the electrons
we expect the wavefunction of the ions to be localized in a region

~ agm/M < ag. Over this small region we can expand the function
E;(R) about its minimum Ry

dE;j(R)

2F.
Ej(R)IEj(Ro)+(R—RO)[ i ]R_R L ropy2 [FE®)

dR?

N

R=Rg
(766)
where the second term vanishes because R is the minimum so we
have
n? 42 n? L(L+1)
2uspdRZ 2pap  RZ

1
+ Ej(Ro) + 5k(R - Ro)*—E|F(R) =0

(767)
so we have
n* L(L+1)

5 (768)
2usp  R3

1
where wy = (k/pgu B)l/ 2 and we have treated the rotational motion
of the molecule perturbatively. We have effectively ignored the pos-
sible centrifugal stretching of the molecule. If we were to include the
stretching of the molecule we would have

n? L(L+1)
2usp R3

_2KPL(L+1)

E.ot =
rot k‘l/lABRé

(769)

We can get dipole transitions between the different rotational
states if
|d| = Zyery + Zoery + |d,| # 0 (770)
and AL = +1. We see that homonuclear diatomic molecules cannot
emit dipole radiation due to changes in their rotational state. The
energy of the radiation is given by

nA(L+1)
uapR3

2 2
I UESY

(771)
kp agR§

Epy1L =
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This energy is ~ e?/ag(m/pp) or ~ 1073 eV.

The transitions between vibrational states has a typical energy of
~ (zz/zzo(m/yAB)l/2 or ~ 107! eV. If one includes the centrifugal
effects one finds that

1
E, = hwy (v + 2) (772)
where >
_ 3HPL(L +1)
1/2
wp = k+ ———— (773)

Morse found that the internuclear potential can often be well approx-
imated by a function of the form

En(R) = Eno+ Bu {1 —exp [Bu (R — Ro)]}’ (774)

The energy eigenvalues of this potential are

1\ 1\?
Eny = hwpg (U + 2) - 4B, <U+ 2) . (775)

The vibrational levels get closer together as v increases and there are

a finite number of vibrational levels
1/2
0<v< (2“5;“) - % (776)

The selection rules for vibrational transtions are again |d| # 0 but
also d|d|/dR # 0. We can change the vibrational level by Av = +1
and we must also have AL = Ligyer — Lupper = +1 (P branch) or
AL = —1 (R branch) or if there is an component of electronic orbital
or spin angular momentum along the internuclear axis AL = 0 (Q
branch).

Fig. 21 shows the three branches for roto-vibrational transitions,
if we neglect the stretching of the molecule. We see that for the R
branch the transition energy decreases with increasing L. For the
Q branch it is constant, and for the P branch the transition energy
increases with increase L. The centrifugal stretching reduces the
spacing of the angular momentum energy levels for large values
of L (Eq. 771), but it stiffens the spring constant of the vibrational
statres (Eq. 773). The latter dominates, so the stretching effect tends
to make the transition energies increase with increasing L for large
values of L. Fig. 22 depicts the roto-vibrational spectrum of CO (the
most commonly observed molecule in astrophysics — it isn’t the
most common, what is the most common molecule and why isn’t it
commonly observed?) from samples of car exhaust. The CO molecule
does not exhibit a Q-branch which would appear at about 2140 cm ™.

The Fortrat diagram (Fig. 23) depicts the transition energies for
various roto-vibrational transitions as a function of the rotational
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quantum number L. The figure shows the expected behaviour, es-
pecially for the “22” transitions for which all three branches are de-
picted. For small values of L the Q-branch has constant energy with
L and then begins to increase with increasing L The energy of the
P-branch transitions decreases with increasing L, and the opposite
occurs for the R branch.

Figure 21: Roto-Vibrational Transitions
Neglecting Stretching

h
I
w

o= N

e

h
I
w

o= N

I

AL =41 Pbranch AL =0Qbranch AL = —1 R branch

Figure 22: Absorption vs.

0.3 Wavenumber for FTIR Spec-

troscopy of CO in car exhaust from
http://home.swipnet.se/~w-74877/ftir/ftir.htm.
Green is a cold engine, blue is a warm

engine, red is a calibration reading and

0.2 cyan is a 100ppm calibration.
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In general each vibration transition includes a rotational transi-
tion as well so one gets group of transitions. The final wrinkle is
that electronic transitions in molecules whose energy ~ 1 eV neces-
sarily include changes in the rotational and vibrational state of the
molecule. The general electronical-vibrational-rotational spectrum
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Figure 23: A Fortrat diagram for
: i i i ) . ] . ) 24Mg35C1 and 24Mg37Cl (isotope)
90.0 | 2% Q21 { from Gutterres et al. (2003), Braz. J.
“ & 022 g¥ R22 Phys. vol. 33
- P11 & &
60.0 - _Pi2 f 0” ' J

F=

& paz &
/ y o 'f 00 sub band
20.0 | \ / L  0-0 sub band {isalope)
% 4

/

0.0
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Rotational Quantum Number

takes the form of bands which can be resolved into individual lines if
the broadening is weak.

Problems

1. The Number of Levels

I fit a Morse function to the potential of H} . The parameters were

2 2
Eno = —0.0652—, B, = 0.072—,/5,1 =07a5', Ry =251y (777)
0 0
How many vibrational levels does H] have? How many rotational
levels does each vibrational level typically have?

2. Nuclear Overlap

Consider two deuterons bound by a single electron as in question
(1). What is the probability that the two deuterons lie on top of
each other, i.e. that R < 4 fermi, the diameter of the deuteron?
What is the probability if the two deuterons are bound by a single
muon, my ~ 207m,? You can find the eigenfunctions of the Morse
potential on Wikipedia.

If you assume that whenever the deuterons overlap they fuse
and that you get to “roll the dice” once each oscillation period,
calculate the fusion rate in both cases.

3. Stretching
Calculate the value of L for which the energy of the P branch
transitions begins to increase.

4. Temperature

Using the results depicted in Fig. 22, estimate the temperature of
the hot and cold car exhaust and the relative concentration of CO
in the two cases.



Fluid Mechanics

Phase-Space Density

The phase-space density of particles gives the number of particles in
an infinitesimal region of phase space,

dN = f(x",p)d’xd’p (778)

If there is no dissipation, the phase-space density along the trajectory
of a particular particle is given by
af

== (779)

where C accounts for two-body interactions between particles. This is

known as the Boltzmann equation. If there are no collisions, C = 0, so

d
d—]; =0. (780)

This is called Lioville’s theorem or the collisionless Boltzmann equa-
tion. This limit applies in galactic dynamics. Here we are interested
in particles in a gas that do collide so we expand out the derivative
along the flow lines to get

of of _
g—i—v-Vf—l—F%—C (781)

where F is a force that accelerates the particles. The collision term C
must now be expressed in the lab frame of this equation that is no
longer manifestly covariant. The requirement of no dissipation tells
us that V, - F = 0.

We would like to define some quantities that are integrals over
momentum space that transform simply under Lorentz transforma-
tions. We derived earlier (§ ) that

d3 d3 l
o= (782)
pt Pt
We also know that Ep, = p; = (p2c + m2c*)/2 so
d3
P_ Lorentz Invariant (783)

Ep
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so we can define various integrals

n(xt) _ [dp
B~ B

(x%, p) (784)

that transforms as a scalar where n(x*) is the number density.. Un-
fortunately, there isn’t much that one can do with it. One could use
it as the source for a scalar theory of gravity, but it would violate the
equivalence principle.

Particle Current

Next let’s define
. d°p .
) =c [ TR p). (785)
P

Because this is simply the sum of things that transform as a four-
vector, J# also transforms as a four-vector. Let’s look at it component
by component

0/, _ dsi 0 x — 3 it _ o
P = [Pt e = [Fpftp) =nt) 089

3 \'
) = [ Frepfep) = L [ v, ) = St iosy)

If we assume that the scattering (C) conserves energy, momentum

and particles we have

/=L
M 9k

We can prove this simply by integrating Eq. 781 over d°p. The first

— n(Vp-F). (788)

two terms yield the left-hand side of the equation above. The third
term gives the right-hand side. This vanishes as long as

Ve F=0 (789)

and the right-hand side vanishes if the scattering conserves energy
and momentum.
Let’s define V = (v) and write out Eq. 789 by components,

on

5T V- (nV)=0 (790)
or a
ait) +V-(pV) =0 (791)

where p = mn where m is the rest mass of the individual particles.
This is the continuity equation. This must hold true regardless of
the nature of the force, i.e. even if V, - F # 0. Because Eq. (788) is
consistent with the Lioville equation (Eq. 780) and more generally
with the Boltzmann equation (Eq. 779) and ]};4 = 0 if particles are
conserved, the Lioville and Boltzmann equations cannot hold if V, -
F # 0 and particles are conserved.
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Stress Tensor

Let’s construct a tensor from the distribution function
TH(x*) =c / pP" "f(x,p). (792)

this is called the energy-momentum tensor or stress tensor of the
system. Let’s take one of the indices to be zero

a3
() = [ Gy ptp) =< [ppt i) (099)

which is the product of the total four momentum of the particle
per unit volume with c. T%(x*) gives the energy-density and the
component T% (x*) gives the density of the j—component of the
three-momentum.

We are free to fix a Lorentz frame that is moving with the material
such that J¥ = 0 for u # 0. If we are willing to neglect effects that
depend on the gradient of the velocity (such as viscosity or heat
conduction) we can define this frame globally. Furthermore, let’s
assume that the distribution function is isotropic in the momentum.
Fluids for which this is possible are called ideal fluids. In this case we
have

0 = 4%(/000 p*f(p)dp,J* =0 (794)

and

e =19 =47 [ PE(p)f(p)ap, % = 0 (795)

The space-space part of the energy-momentum tensor must be sym-
metric, isotropic and a three-dimensional tensor (a matrix). The only
tensor that works is

T =P, (796)

where

.= Po, —3P—C/Ep p*f(p) —47rc/ E(p) f(p)dp  (797)

SO
_4Am o, e pt

Notice that the trace of the energy-momentum tensor T" lﬂ is a scalar.
In fact it is simply the product of m?c* with the scalar density defined
in Eq. 784.

Let’s look at the non-relativistic limit of the energy-momentum
tensor. Let’s take T% = mc?n + €, where

.00 2
700 _ 471/0 P2 (mcz + zpm) f(p)dp = nmc® + ene (799)
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where )
_ ® 2P _2r /°° 4
Enr = 471/0 P fpdp == | P f(p)dp. (800)
Let’s look at the non-relativistic limit of the pressure
_4n o 4r 4
Pu= 2 [T ) = 2T T piay gon

SO €pr = %Pm. Now let’s take the opposite limit
€ = T = 4t / " P2 (p0) f(p)p, pur = L / ) p4f (p)dp  (802)
0 3 0 pc

so P = €/3 in the ultrarelativistic limit. We can transform from this
special frame to a frame where the fluid moves and get

T, = (P + €)U"U, — P&", (803)
and
]’4 = Mprop u (804)

Nprop 15 the number density of the particles in a frame moving with
the particles and U is the bulk four-velocity of the fluid.

We can calculate the evolution of this tensor by integrating over
Lioville’s equation times p# to get

oo _ 9T _ ) n(v-F), p=0
S ecn(F), wu>0"

(805)

We prove this by integrating Eq. 781 times p# over d°p. The zero-
component is simply the work performed by the force on the parti-
cles in the volume. The other components account for the change in
the momentum of the particles.

Non-relativistic limit Let’s examine what this equation means in the
non-relativistic limit,

0—¢ /d3pf mc ( +;§) :pc2+/d3pf (;mvz) = pc® +n(E)
(806)

V=2 [d (1422) 2 (peva Lq)
= pfmev s2)=(pPV+_a (807)

q= /d3p (;mvz> vf (808)

is the flux of kinetic energy. The first term is the flux of rest-mass

and

where

energy. Finally for the space-space part we have

™ = /d3me”U"f. (809)



Let’s look at the zero-component of Eq. 805

10

= (24 n(E))+ V- (pev+ L) =niv-F)  (810)

c
We can subtract ¢ times the continuity equation to get

on(E)
ot

+V.-q=mn(v-F). (811)

This ensures conservation of energy. We can divide the energy from
the bulk flow from the random kinetic energy of the fluid

_n/1 2\ _ 1 .o 1 5 1 ., 3
N(E) —N<2m(V+vr) >— 2pV +2p<v,) = 2pV +2NT, (812)

defining the temperature T of the fluid.
The spatial part of Eq. 806 gives

10 q\i K oT*
= (pcV+ E> toE = n(F). (813)

The first term in the parentheses is larger by a factor of ¢? so to low-
est order we have

9/ ., oTk

= (ov') + S = nlE). (814)
This is equivalent to neglecting the momentum carried by the flow of
energy.
Ideal Fluids

For an ideal fluid we found that the stress tensor took a particular
form,
T = (p+e)UrUY — Pg (815)

In the non-relativistic limit we find that space-space components are
Tix = pViVi + Poy (816)

and ,
q= [ZVZ + w} oV (817)

where w = (e 4+ P)/p is the heat function (enthalpy) per unit mass of
the fluid. Notice that there is no energy flow without bulk motion. If
we substitute this into the equations derived earlier we get

9 9 d
LAV (V) = T+ (V-V)p+pV- V=4V V=0 (818)

and
A _ A _E (F)

T T (819)
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In the ideal fluid, no heat is tranferred between different parts of
the fluid, so if we denote s as the entropy per unit rest mass we have

ds

rri 0 (820)
for a bunch of fluid; therefore, we also have a continuity equation for
the entropy

a(aptS) + V- (psv) = 0. (821)

We can use the continuity equation for particle number to simplify
this further,

0
p£ +v-V(ps) =0. (822)

Isentropic flows

An important case of adiabatic flows is when the entropy s is initially
constant. In such an isentropic flow, the entropy will remain constant
and we can derive some additional useful forms of Eq. 819.

From the definition of the work function w and thermodynamics

we know that
dp

1
dw = Tds + —dp = (823)
P P
because the entropy is constant, ds = 0. We get
A% av (F)
(V- V)V= = _ A
o +(V-V) T Vw + - (824)
From vector analysis we know
lo 2
EVU =vx (Vxv)+(v-V)v (825)
and we can get
ovV. 1_ , _ (F)
g—i—EVU —vx(va)——Vw—i—W. (826)
If we take the curl of both sides we find that
d (F)
a(V><V):V><(V><(V><V))—1—V><W (82y)
w =V x V is called the vorticity.
If we assume that F/m = —V¢ which is often the case, we find

that if the flow in an isentropic, ideal fluid is initially irrotational it
will remain irrotational.
We can go further than this. Let’s define

r:fvdl (828)
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taken along some closed contour that moves with the fluid. Let’s
calculate

dar d d dav d

Because dr is the difference between two positions moving with the
fluid we have

d dr >
v~%(5r—v~(5a—v-(5v—5v (830)
> d d (F)
v :
aj{wdlf E'dlff (—Vw+m> =0  (831)
if F/m = —V¢, so the circulation around a contour moving with the

fluid is constant if the flow is isentropic.

Figure 24: The circulation around a

147

close contour (bold lines) that travels

with the fluid along the streamlines

(light lines) is conserved if the fluid is

isentropic.

Hydrostatics

Let’s assume that the fluid is not moving. If we look at Eq. 820 we get
the equation of hydrostatic equilibrium. Let’s further suppose that
the force is derived from a potential, we obtain,

vp _

5 —~Vé. (832)

Let’s take the divergence of both sides

V. <VJ) = V%= —4nGp (833)
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and in spherical coordinates we have

1d (r*dp

27 (pdr> = —4nGp. (834)
An interesting and important case is when the fluid is isentropic as
well, then we have

Vw = =V¢. (835)

and
Viw = —4nGp (836)

If we look at the Eq. 836 and imagine that the fluid is rotating we
have an extra term,
Vw = —V¢ + Q?(r)R (837)

where R is a vector pointing from the rotation axis to the point in the
fluid. Let’s take the curl of both sides to get

0=0+Vx (Qz(r)R> (838)

which tells us that
O(r) = Q(R) (839)

or that isentropic stars must have constant angular velocity on cylin-
drical surfaces.
Really Little Sound Waves

The next order of complexity is to assume that the fluid is at rest
with a small perturbation and to see what the perturbation does. We

have 5 30/
YLy — 9 V=
3 + V- (pV) o +p0V-V =0 (840)
and oV av.vp oV’ VP
E—F(V-V)V:E—F?:j 00 =0. (841)
We can write P’ = (0P /0dp)sp’ and rewrite the continuity equation to
get
or’ oP y
ﬁ‘f’ﬂo <ap)sv‘v =0 (842)
Let’s take the divergence of the Euler equation to get
ov.-Vv' V2P
ot =0 (843)

and the time derivative of the continuity equation to get

o2p’ oP oV’
252 TPo (ap> Voo =0 (844)
S
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Finally we put the two together to get

o (o

v 2 /I
pYe) 3P>s V<P = 0. (845)

This is a wave equation with a sound speed of c2 = (dP/dp)s. Let’s
take a solution to this equation for the pressure,

P’ = p'expli(k - r — wt)] (846)

with k*c2 = w? and calculate the velocity of the fluid

V' = v expli(k - r— wt)] (847)
From Eq. 842 we get
—wv + P—/k =0 (848)
o
and from Eq. 843 we get
—wp' +pocsk - v = 0. (849)
Combining these results gives
—wv' + Mk =0 (850)
and rearranging
vV = Cgl;.z‘/k = U’% (851)

Therefore, the fluid is displaced in the direction of the propagation of
the wave; it is a longitudinal wave.

Steady Supersonic Flow

Many disturbances travel through a fluid at a finite speed (changes in
the entropy or vorticity move with the fluid). If the fluid itself travels
faster than the speed of sound, a disturbance starting at particular
point only can travel downstream so the upsteam flow cannot know
about it. A flow can become supersonic abruptly as in a shock or
continuously. We will examine this latter case here.

Let’s imagine that a fluid is flowing through a pipe of variable
cross section A(x) and that the flow is steady so that all partial
time derivatives vanish. We can write the continuity equation as
pvA =constant. The Euler equation becomes

dv _ 1dp _ (p)dp
V— = ——— = — -
dt o dt p dt

(852)

where we have assumed that the fluid flows in the x—direction. From
the continuity equation we know

1dA _ 1d(pv) 1 ( dp dv)

Adt po dt  po

b pr (853)
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We can combine the two equations to get

(854)
If v < cs we have the following situation,

¢ If the area of the pipe decreases (nozzle) in the direction of the
flow, the velocity increases and the pressure and density decrease.

¢ If the area of the pipe increases (diffuser) in the direction of the
flow, the velocity decreases and the pressure and density increase.

On the other hand if the flow is supersonic (v > cs) we have

e If the area of the pipe decreases (nozzle) in the direction of the
flow, the velocity decreases and the pressure and density increase.

e If the area of the pipe increases (diffuser) in the direction of the
flow, the velocity increases and the pressure and density decrease.

If we have a tube in which the flow is initially subsonic and the
area of the tube decreases, the flow will accelerate. If the area of the
tube increases again the flow will decelerate and you're back where
you started. On the other hand let’s imagine that the area of the tube
decreases sufficiently that the velocity of the flow reaches the speed
of sound at the cinch point of the tube, the fluid will exit the cinch
point supersonically and accelerate as the tube inreases in cross-
section. Now you know why a rocket engine is shaped like it is (this
is called a de Laval nozzle).

Flow through a Channel

— ()

A
y(x)

We can see many of the features of the supersonic flow through a
de Laval nozzle in the flow through a channel. Much of the intuition

dnA _ ¢ (, ©\dinp _p ( o\dnp ([ o\ dno
dt 02 2) dt  po? ) dt cz) dt

Figure 25: A channel of variable depth
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developed in hydraulics carries over to other fluid systems (even
astrophysical ones); furthermore, water running through a channel is
something with which most are familiar.

Let’s look at a channel of constant width but varying depth y(x).
Let’s take y equals to zero well before the bump. We would like to
know how the height of the surface of the flow z(x) changes as it
passes through the channel (as shown in Fig. 25).

Let’s write out the Bernoulli equation (divided by g as customary
in hydraulics) for the fluid moving along the surface,

2 2

;—g+z+%=;—§+zo+%:ho (855)
where p, is the pressure of the atmosphere. The quantity hy is a
constant along the surface streamline, and it is so important in hy-
draulics that it has a special name, specific head. From continuity we
have

v(z—y)="v9z0 = 9o (856)

where g is the flux. Notice that we have neglected the vertical veloc-
ity of the flow. This is a common assumption in hydraulics. Combin-
ing the equations yields

07% %0 2_1
2 z—y

Taking the derivative with respect to x yields

dy _ dz l1_3(zy>3] _ 4z {pw] _ & 1-Fr2].

dx  dx v3z2 T dx 02 dx

+g(z—20) =0. (857)

(858)
where Fr is the Froude number, the ratio of the speed of flow to the
speed of small wavelength gravity waves (see § ). We can rearrange
this a bit to yield

dz _ dy Fr

ax % 1_F2 (859)
so if the fluid is subcritical or streaming (“subsonic”) over the bump,
the surface will dip, and if the fluid is supercritical or shooting (“su-
personic”) the surface will bulge. For the equation to make sense, if
the flow becomes supercritical, it must do so at the top of the bump.

Fig. 25 shows the various possibilities. Essentially for given values

of ¢, 79 and zp and for a small enough values of y(x), there are two
solutions for z(x). One is a small deviation in the level of the surface
that corresponds to a subcritical flow. The second has a large devia-
tion (supercritical flow). When the flow is critical these two solutions
coincide. The upper curves show the surface for various values of vy.
The uppermost curve is always well in the subcritical regime. The
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middle curve nearly reaches the critical point at the top of the bump,
and the lower curve reaches the critical point and is supercritical to
the right of the bump.

When the flow is critical at the top of the bump, we see that the
smooth solution is the one that goes supercritical after the bump.
At first glance the whole setup seems quite sensitive. In particular
what if the bump is so big that the flow goes critical before reaching
the top of the bump? For a particular set of initial conditions we can
calculate the height of the bump where the fluid goes critical to be

2 2/3 2/3
_ 05  3(vozo)™" 340
Ye =20+ g - 2g1/3 = ho — 2g1/3 (860)

We can actually do much better than this. If we look at Eq. 857 and
make the substitution z = y +1/u we get

v3z3 v3
0w’ — | S+ g (20 —y) | ut+g=0. (861)
This equation has the form
Au® —Bu+C=0. (862)

Let us substitute u = \/4B/3A cost to give after some manipulation

3C [3A

— (863)

coth:fE B

which gives three real solutions for u as long as the absolute value of
the right-hand side does not exceed unity. We can also use this result
to solve for vy in terms of y. in Eq. 860. Both this and the solutions to
Eq. 861 are left for the exercises.

Real Sound Waves

Let’s take a closer look at sound waves. As before we shall assume
that the background is static so before we perturb the medium the
entropy is constant throughout. Let’s perturb the fluid in a particular
wave so that s remains constant. In this case, we can express the
pressure in terms of the density alone.

Furthermore, let’s assume that the velocity of fluid at any point
depends on the density alone and look at the continuity and Euler

equations
do  d(pv) dv  dv  10P
TR PR TR MR

where we have assumed that the wave is a plane wave travelling

0 (864)

in the x—direction. Using the relationships between the pressure,



velocity and density we can obtain,

8£+d(pv)ap_0 80+<U 1dP> 80_0.
o dv

ot " dp ox = ot ax (865)

We can define the speed of the wave as the rate at which regions of
the same density or velocity move forward along the x—direction,

9

o\ _ _jar|_dler) _ o dv

<8t>p_ [gp]_ ip —v+pdp (866)
X

dx % 1dP

0
dx

and

These two velocities must be equal so we get

dv  1dP  c2dp

pdp T pdv pdo (868)
SO Ip
C
:i/—sd :i/—. 86
v o ocs (869)

We can find how fast a portion of the wave travels by substituting
into Eq. 868 to get

(E;f)v =v+cs(v) (870)
so we find that
x =toEces(v)]+ f(v) (871)

where f(v) determines the initial shape of the wave. Let’s derive an
expresion for the sound speed as a function of the density,

= _— — 7_1
s [ dp] [VKP } (872)
SO
e\ /D
P =ro () : (873)
€0
If we substitute this into Eq. 872 we get
1
¢s = cot 5 (v —1)o. (874)

We can use this result to express the density and pressure in terms of
the fluid velocity

2/(y-1) 2y/(v—1)
”} , P—Po[lil(’Y—l)v}

1
P—PO{liz('Y—l) 5

< <

(875)
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Putting things together we find that

x=t [ico + %('7 + 1)0] + f(v) (876)
or rearranging

v:F{x— {ico—ké('w—l)v} t} (877)

If we look at Eq. 877 we see that we can have a situation where the
same value of x has more than one value of v. This isn’t physical.
This first occurs at a time t when

ox 9?%x
(az)t =0 (avz)f =0 (878)

2f'(0) Ly
- 7+1’f (v) =0. (879)

The first expression tells us when the shock forms, and the second

or at

tells us that the shock forms at a point of inflection in the wave.
Another important situation is when the discontinuity forms at a
boundary between gas that is moving at gas that is stationary (v = 0).

2f'(0)
F=— 88
v+1 (850)
As an example let’s assume that we have a pipe closed at one end

In this case we have

by a piston and we start to move the piston according to vt = at.
Because the gas at the edge of the piston must move with the piston
we have v = at at x = %atz, so we can write down an expression for

_ 1, 1 NP S S
f(U)—f(”t)—Eat cot E(’y—i—l)at = —cotb E’Yat = (—)v

a
(881)
Using the expression for x we get
_ 1 — o) = — (), L7
x [co+2('y+1)v}t—f(v)— (a)v 570 (882)
Solving for v gives
1 . 2 1/2 1
v=— co— =(y+1at| +2ay(cot — x) —lcs— = (y+1)at
0% 2 2
(883)

If a < 0 a rarefaction wave travels through the gas. On the other hand
if a > 0 we get a shock at a time,

ZCQ

__2f'(0)
P="0 51 T a1y (884)

We leave the exploration of shocks to the next chapter; suffice it to

say for now that shocks happen.

1y 5
240"
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Figure 26: The Characteristic Structure

“‘ for a Rarefaction Wave, a < 0. Notice
the smooth transition between the
‘ ‘ ‘ regions.

SRS
SRS

‘Q
RLKS

Figure 27: The Characteristic Structure
for a Compression Wave, a > 0. Notice
the abrupt transition between the
regions.

Problems

1. Maximum Flux

Calculate from the Euler equation and the continuity equation,
at what velocity does the flux (pV) reach its maximum for fluid
flowing through a tube of variable cross-sectional area? At which
velocities does the flux vanish? You can consider the flow to be
adiabatic.

2. Stream Bed

Fig. 25 shows how the level of the surface changes for a flow pass-
ing over an obstacle. For an initial depth of zyp = 1 and g = 10 and
a bump height of y(x) = 0.1e=*’, find the solutions to Bernoulli’s
equation (Eq. 857) for z as a function of x and the initial velocity
vp. You may find several solutions for a given x. Also you should
only worry about the positive real solutions for z. What are the
values of the critical velocities vy?

3. Sound Velocity

Show that for a linear sound wave i.e. one in which dp < p that
the velocity v of fluid motion is much less than cs. Estimate the
maximum longitudinal fluid velocity in the case of a sound wave
in air at STP in the case of a disturbance which sets up pressure
fluctuations of order 0.1%.






Shock Waves

Non-relativistic Shocks

Discontinuities signal a failure of fluid mechanics as we have formu-
lated it. Fluid mechanics assumes that the material is continuous so
quantities cannot change discontinuously. In practice viscosity and
thermal conduction save the day, so although the wave may get re-
ally steep, a discontinuity doesn’t actually form. To understand the
structure of a shock, one needs to include viscosity, but one can un-
derstand the behaviour of shocks without including viscosity as we
shall see.

Let’s stand in the frame of the shock. The fluid approaches the
shock supersonically on the left side and exits subsonically on the
right side. Let P, p; and v; denote the physical quantities on the left-
hand side (the pre-shock fluid) and P,, o2 and v in the post-shock
fluid.

First we have

101 = P202 = J. (885)
What goes into the shock must come out of the shock. If you remem-
ber the energy flux for an ideal fluid is

q= sz + w] oV. (886)

This flux must be the same on each side (unless the shock is radia-
tive) so we have

1 1
(ZU% + w1> p101 = (205 + w2> 0202. (887)
Because of conservation of mass we can simplify this to
1 Lo

This states that the sum of the kinetic and internal energy per unit
mass is conserved across the shock. Third we have to conserve the
momentum flux

Py + p10] = Py + p203 (889)
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We can use the defintion of the enthalpy to eliminate it from the
equations

p v P Y
w=€e+— = — = kgT. (890)
pry—1lp -1 ?
Let’s define the Mach number of the incoming flow as M; = v1/cs

and rewrite Eq. 889 as

P, P12 P
2142
p, T pU

2 2 2 01
v5=1+7yM7(1—"—]. 891
P12 (Y 1( PZ) (9)

We can also rewrite Eq. 888 to yield
P 1
SRR (o Ry 892)
P12

and we can equate these two expressions to solve for p/p;. From
inspection we see that one solution is pp = p1, which means that
there is not discontinuity. The other solution yields

pp_v _ (EDFOEDME-D (kDM
P12 (v+1D)+(y—1)(M?—-1) 24+ M2(y—1)
2 o 2
R e L
% _ (1—7‘1‘2(]\’/1;1)1[)22‘]'\'4]%\41(7—1)] (895)
R T A T

where intermediate expressions are given to show that if M; > 1,
then pp > p1, P, > Pjand M, < 1. The fluid enters the shock
supersonically and leaves the shock subsonically. The post-shock
fluid has higher pressure and density. It is not obvious from the
expression but the post-shock temperature always exceeds the pre-
shock value.

As we take the limit of a stong shock M; — oo we find that the
compresssion ratio and square of the downstream Mach number

approach

1 1

+1
&:LandM%ZE—E. (897)

P or—1

For v = 5/3 the compression ratio is 4 and the downstream Mach
number is 1/+/5. For a diatomic gas (y = 7/5) the maximum com-
pression ratio is larger at 6 and the square of the downstream Mach
number is 1/+1/7 — in fact the compression ratio p,/p; always equals
1/M§ — 1 for any value of M.

Although the solution outlined above gives the ratio of pressures,
densities and other quatities as a function of the incoming Mach
number Mj, there is an alternative approach that is somewhat more
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illustrative. First let us define the specific volume of the fluid V =
1/p, so we can write v; = jV; and v, = jV; from Eq. 885. Let’s
substitute this in Eq. 889 to give

p1+ Vi = pa+ PV (898)

SO A
o _P2a—p_ Ap

Let’s use this value of j? to determine the velocity difference

01 — 0y = ] (V1 - Vz) SO ("01 — ’02)2 = (Pz — pl) (Vl — Vz) = —ApAV.
(900)
Both Eq. 899 and goo
Now let’s use the same values of v and v; in the energy equation

1. 1.
wy + §]2V12 =wy + §]2V22 (901)
and 1
wq —w2+§(V1 + W) (p2—p1) =0. (902)

Because the specific enthalpy w is a function of P and V, Eq. 902
defines a curve. Let’s specialize for an ideal gas, for which w =

v/ (v —1)pV, so

P2 =p1 "113 : % Wit ) (903)
—1V2— 2 (Vi 4+ V2)
The denominator vanishes for
B_f_rtl (904)

Voo ;o -1

the same value as Eq. 897 Fig. 28 depicts the shock or Hugoniot
adiabat for a shock with a preshock pressure p; and specific volume
V1. Any point along the curve a to the left of (p1, V1) is a possible
postshock condition. A particular postshock condition (py, V2) is
highlighted. The minimum flux passing through the shock is given
by the negative of the slope at (p1, V1), and it increases as the shock
gets stronger. The velocity difference vanishes for small shocks and
grows as the area of the box as the shock grows.

The curve b to the left of (py, V2) shows the possible postshock
conditions if the preshock condition is (pp, V2). Notice that it also
intersects the curve a at (p1, V7). There are two (or no) shock adiabats
that connect any two points in the p — V —plane. One corresponds
to pressure and density increasing through the shock (curve a), and
one corresponds to pressure and density decreasing through the
shock (curve b). Earlier it was stated that these quantities must in-
crease through the shock, but no reason was given. Fig. 28 shows
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the curves of constant entropy or standard (Poisson) adiabats on the
p — V—plane corresponding to the values of the entropy at (p1, V1),
s1, and at (p2, V2), sp. We know that if the pressure is higher at a
particular density or specific volume than the entropy is larger so

sp > s1. From the second law of thermodynamics we know that en-
tropy cannot decrease in an isolated system, so the initial state of the
flow must be (p1, V;) and the final state is (pp, V). Furthermore, we
can see that the curves of constant entropy not only pass through the
correponding plots in the plane (this is by design) but they are also
tangent to and have the same radius of curvature as the shock adia-
bats. This means that both the first and second derivatives coincide
for these two sets of curves and that the increase in entropy is third
order in the size of the shock.

Although the curve b that travels from (p,, V») to (p1, V1) is an
unphysical solution for a shock because entropy decreases along the
path, it does provide some great insights. What is the velocity of the
flow on either side of the shock? We have

A A
2 _ 22 BPo 2_ _BPn2
1 =] Vl - AVVl and U2 AVVZ . (905)
What is the sound speed on either side of the shock? We have
oP oP oP oP
2 _ 90 _ 2090 _ 290 2 _ _y2 9F
Cs1 = %, 13y . Lav|, and ¢5, Vi V|, (906)

so the Mach numbers on each side of the shock are given by the ratio

Figure 28: Shock (Hugoniot) Adiabats
(in black) and Standard (Poisson)
Adiabats (in blue)
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of the slope of the secant to the slope of the tangent. That is,

2 Ap aj

Ap ;0P
Mi=3v/ v, v

and M3 = L

Av/ 37 (907)

b
Because all of the adiabats are concave up in the p — V—plane, the
slope of the secant must be larger than that of the tangent at (p1, V1),
so the flow enters the shock supersonically. Conversely at (p,, V2) the
slope of the secant must be smaller than that of the tangent, so the
flow exits the shock subsonically. As the shock decreases in intensity,
the figure demonstrates that both Mach numbers approach unity.

A Spherical Shock - The Sedov Solution

Let’s imagine that we dump a really large amount of energy into
a small region. The energy is initially carried by a small mass (m).
Initially, as long as

m > %nﬁp. (908)

where the right-hand side is the mass swept up. The ejecta will freely
expand. Let’s imagine sometime later when the mass of the ejecta is
negligible but that the energy of the explosion is still large compared
to the enthapy of the swept-up material

4
E> gnr3pw. (909)

This is equivalent to p, >> p1, so we have a strong shock, so p2/p; =

(r+1)/(r-1)
In this situation, we only have four numbers of interest,

¢ 1, the distance from the centre of the explosion
¢ ¢, the time since the explosion and

e E, the energy of the explosion.

® 01, the density of the undisturbed gas

By combining E, t and p we can find only one expression with the

dimension of length, so let us take the radius of the shock to be
ER\'/°
R()=Ro(55) (910)

1

where Ry is a dimensionless constant that we will determine from the
solution. The velocity of the shock wave with respect to the undis-
turbed gas is
dR 2R 2
_ ROEl/Sp;l/5t73/5

Vs = U= —- ==

it 5t 5 (911)
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We would like to know the speed of the gas relative to the undis-
turbed gas after the shock has passed,

Uy — V15 = U2y — U1y = Vo (912)

For a strong shock we have

o = X1 o 2 (913)
2’“774-11/5 1,s*7+1s 913
and +1 2
Y 2
= and P, = ——pqug. 1
P2 =Py 2= P (914)

Behind the shock, the fluid is ideal so we can use the continuity,
Euler and energy equations

v Jv 1ldp
5“’5*;5 = 0 (915)
% , Apv) 20 _
8t+ or ro 0 (916)
0 0 p _
(E)t+v£91’)ln<m> = 0. (917)

The final equation says that the entropy per unit mass does not
change. The trick to solve these equations is to assume that all of
the variables depend on the similarity variable { = [r/R(t)] with the
right scaling. For example we have

2r P 47

v = gV(C)/P =01G(g), ¢ = L ﬁz(@- (918)

The shock jump conditions give the boundary conditions for the
solution,

_ 2 _ a1 _ 2v(v=1)
= mfG(l) = ﬁ/z(l) = W (919)

Padmanabhan gives a general solution to these equations in closed

V(1)

form, but let’s look at the results for v = 5/3 depicted in Fig. 29. In
general the value of V ranges between 1/y at{ = 0 and 2/(y + 1)
at ¢ = 1; it doesn’t change much with the similarity variable; most of
the change in the velocity from the center to the edge comes from the
scaling in Eq. 918 and the values of G(&) and Z(¢) can be written in
terms of V(&). We can find one of these relationships by examining
the conservation of energy in the flow. The total energy of the flow is
simply E because no energy leaves the flow and the material swept
up by the shock is assumed to have no energy. Furthermore, the

flow is self-similar so the energy contained within a spherical shell
labelled by the similarity variable § must be constant with time. Let’s
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look at a the flow at particular value of ¢. The total energy flowing
outward through a spherical surface over a time dt is

2
dE = 47r? (w + Z;) pvdt. (920)

On the other hand the volume swept out as the flow expands self-
similarly is

dV:4m2ﬁ
ot

dt. (921)
g

We can combine this with the energy density to yield the energy in
the region

5 Or 02
dE = 4mr? 3% (e + 2) podt. (922)
We can equate these two energies and solve for ¢ = P /p to give

_ 1y =DVE)?[1-V(Q)]

The final step in completing the solution is to find the relationship
between the energy of the explosion and the value of Rg. We have

R 2 R 2 >
E= /0 artr’drp VZ +e] = / 4rrdrp [UZ + 7(765_1)} (924)

and change variables to ¢ with r = R(t)¢ to yleld

E= ROy [ o) [YEE+ 2O ey

and

R 0[S 2] o

showing explicitly that the value of R is a dimensionless number
that only depends on the value of . The value R is approximately
1.033 for v = 7/5 and 1.152 for v = 5/3. It ranges from 0.783 to
1.232 as y goes from 1.1 to 1.9. Amazingly without knowing 7 well
one can get an estimate of the energy of the blast (within a factor of
three) simply from measuring the value of the radius of the shock at
a particular time and taking Ry = 1.

Detonation Waves

In a detonation as the material passes through the shock energy is
released either through chemical changes or nuclear burning. One
could have either a release of energy through the shock (like com-
bustion) or a consumption of energy (like ionization). The jump
conditions are with the exception of the energy equation

1
*ZJ%+ZU1 =

1
5 ST (927)

2
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Figure 29: Variation of the density,
v/ velocity and pressure behind the shock
for the Sedov-Taylor blast wave

p/p2

p/p2

r/R

where w; and w, are now different functions of p and V to reflect

the different chemical or nuclear composition of the gas before and
after the reactions. Fig. 30 depicts the situation graphically. The lower
curve a is the shock adiabat without the chemical changes and ' is
the detonation abiabat which uses the functional form of the enthalpy
in the burnt gas. We still have the relationships between the flux,
velocities and slopes and areas on the p — V—plane, because these
originated from the conservation of momentum and mass not from
the energy equation that has changed.

The various points outline how the gas changes as it passes
through the shock and burns. An example of the general case, the
gas enters the shock supersonically at A and is compressed to point
B and leaves the shock subsonically and at the same time or after the
gas burns and moves along the chord to point E. Because the flux
of the flow is conserved through the transition, the state of the gas
must remain on the chord AB. There is a minimum flux that can pass
through the detonation front, jmin, and this flux also corresponds to
the minimum velocity jump through the front where the final state
is O or the Jouguet point. In the case of a shock without a chemical
change there is no minimum velocity jump.

Although the minimal value of the flux appears to be a special
case, it is actually occurs in nature often. A detonation that proceeds
from A to D and then to O minimizes the entropy incease in the
front. Furthermore, for final states above O along a’ the gas leaves the
front subsonically. If the final state lies at O, the gas leaves the deto-
nation front right at the speed of sound in the downstream flow. This
special situation often arises when the combustion itself creates the
shock. Let’s take a specific example of a detonation front that starts
near the closed end of a tube. The front must be followed by a rar-
efaction wave that travels up the tube at the speed of sound through
the postshock gas. If the postshock gas is traveling subsonically rel-
atively to the shock then the rarefaction wave will eventually catch
up to the back of the shock reducing the flux through the shock by
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reducing the postshock pressure and shock velocity relative to the
preshock gas until the minimum flux is achieved. At this point the
postshock gas leaves the front at the sound speed so the rarefaction
wave no longer overtakes the shock and the combined detonation
front and rarefaction wave achieves a steady state. The detonation
adiabat below the Jouguet point O cannot be reached if the com-
bustion begins after the gas is compressed. The point E for example
has a lower entropy than point C so the gas cannot pass from C to E
either immediately after the shock or through a subsequent shock.

14 Figure 30: Shock (Hugoniot) Adiabat
(in gray), Detonation Adiabat (in black)
and Standard (Poisson) Adiabat (in
blue)

Radiative Shocks

So far we have assumed that the energy in a fluid element is con-
served through the shock, that no energy leaves the flow or is radi-
ated. The opposite extreme is that the shock heats the gas sufficiently
that radiative losses are important near the shock and the gas rapidly
cools. In this case we must abandon the conservation of energy flux
through the shock (Eq. 888) and find another criterion to understand
how the gas changes through the shock. Astrophysically the rate that
gas cools can depend very sensitively on the temperature of the gas.
In particular gas above about 10* K radiates much more effectively
than cooler gas. Imagine if the gas before the shock was just below
the critical temperature at which cooling set in. As it passes through
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the shock, it goes above this temperature and then rapidly begins
to cool and rapidly returns to its initial temperature. The additional
condition that we seek is that final temperature equals the initial
temperature.

Constant T

52

Again we still have the relationships between the flux, velocities,
slopes and areas on the p — V —plane that result from the conserva-
tion of momentum and mass, but the shock adiabat is replaced with
an isotherm as shown in Fig. 31. From the diagram it is apparent that
the entropy of the gas decreases through an isothermal shock; as a
gas is compressed at constant temperature, its entropy decreases. The
radiation carries away both energy and entropy. Because the standard
adiabats are generally steeper than the isotherms, the gas always
leaves the shock subsonically. Again because the momentum flux
is conserved, the gas must remain on the chord AC throughout. As
it passed through the shock it is heated from A to point B and then
as it cools it travels from B to C. As for the case of a detonation, we
find that there is a minimum flux that can pass through an isother-
mal shock and a minimal velocity change. Just above the flux jmin the
flow enters the shock slightly supersonically and leaves subsonically.

The initial and final Mach numbers and densities are related

through
1 p 2 P 2
My =—— 2 — M2, 22 = 4 M2 28
27M1p17P171 (928)

Figure 31: Isotherm (in black), Shock
(Hugoniot) Adiabat (in gray), Standard
(Poisson) Adiabats (in blue)
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The ratio of the energy flux entering the radiative shock to that leav-
ing is given by
B o (Y= 1M+2
72 1292M2 -1
For large values of M; the initial energy flux is much larger than the

(929)

final energy flux. At the other end the minimum value of M; is of
course unity. This yields a minimum energy ratio for the isothermal

shock of )

N 14

= = . (930)

92 Imin 2y -1 93
Even this weakest of isothermal shocks results in a compression ratio
p2/p1 ="

Sometimes the temperature of the gas is held constant through
the interaction with an external radiation field, so that even slight
departures from isothermality disappear on a short timescale. In
this case it makes sense to take v = 1. If we substitute y = 1in
Eq. 893 through 896 we obtain Eq. 928. However, the enthalpy of an
isothermal gas is given by

w=ciln (p> : (931)
o
so if we take the reference density py = p; we find
4
no_ M
02 1+inM (932)

Relativistic Shocks

We will look at relativistic shocks as an example of relativistic hydro-
dynamics. In particular we will look at the relativistic jump condi-
tions across the shock. The particle flux must be conserved across the
shock (Eq. 804)

Jxa = T2 %1 = % (933)
where V) = 1/nprop1 and Uy = 101/ ¢ is the spatial component of
four-velocity of the flow before the shock and 71 = (1—v2/c?)"V/2 It
is most clear to use the rest-mass energy density for nprop. The com-
ponents of the stress-energy tensor must also be conserved (Eq. 815)

Txo1 = Txop, willim = wally 2 (934)

and
Text = Tax, w1Uf + p1 = wpU5 + p (935)
where w = € + p and € includes the rest-mass energy of the particles.

Here w is the enthalpy per unit volume whereas in previous sections
it denoted the enthalpy per unit mass, Wmass = Wyolume V-
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By combining the particle flux, Eq.933, and the momentum equa-
tions, Eq. 935, we obtain the results

2 P2 —p1 P2 — P1

p— pu— 2 6
J w Vi —w Vi Vr — Vo (936)
2 2 2 Vi—V
(U =) = jJ(N—-V)'=g——(p2—p1) (V1 —V4937)
Vi — Vwp

where V,, = wV? = (p + €)V?2. These are analogous to Eq. 899
and goo. Finally we can derive the equation of the shock adiabat,
using the identity 7> = 1+ U?, to yield

w1 V1 — w2 Vo + (Vg1 + Vo) (p2 —p1) =0 (938)

which is very close in form to Eq. 9o2. In the non-relativistic limit for
the second term we can take V;, = V, but we must look at the first
terms more closely because the result depends on the difference of
two quantities that are equal to lowest order in the non-relativistic
limit. In particular,

w1 Vy,1 = w%Vlz = (p1C2 + ZUNRJ)Z Vlz =1+ 2wnra V1 + w%\lR,lvlz
(939)
where we have used p;c?V; = 1. We can drop the last term. The first
term cancels in Eq. 938, leaving the middle term which equals twice
the enthalpy per unit mass and results in twice Eq. go2.

Hydraulic Jump

Let’s revist the dynamics of water travelling down a shallow chan-
nel. We neglect the vertical motion of the fluid and assume that all
dimensions are large compared with the depth of the fluid — this is
the hydraulic approximation. If the flow only depends on the posi-
tion x along the channel and time ¢, the continuity and momentum
equation are

oh  d(vh) dv ~dv _ oh

o o Ve % T 8ox (940)

where the depth  is assumed to be constant across the channel. We
can define a surface density § = ph and a mean pressure p = pgh?/2
and recast the equations as

p n d(vp dv duv _ 1dp

o T ax Vo T T pax (941)

These equations are identical to the equations for the adiabatic flow
of a gas with p o« p?. We can apply the results from gas dynamics to
hydraulics as along as the flow is abiabatic — no shocks.



These equations do not include the conservation of energy equa-
tion because we assume that the flow does not have any internal en-
ergy or entropy. In practice the energy in the flow can be transferred
to small scale motion of the fluid which is quickly dissipated. Let us
examine discontinuities in the fluid height and velocity by using the
conditions of continuity on the particle and momentum flux. Such
discontinuities are known as hydraulic jumps. The mass flux density is
simply j = pvh and the momentum flux is

/%(+ ﬂd—l 12 + po?h (942)
, \PTPU)az=508 poha. 942
The jump conditions are
1 1
v1hy = vaha, vihy + Egh% = v3hy + Egh%- (943)

We can express any two quantities in terms of the others in particular
we have the velocities in terms of the heights

1 hy 1
v} = 287, (h1 +hp), 05 = 281, (h +ha). (944)
If we look at the energy flux in the channel we have
h
_ p,15 _ 1 2
q—A;C{+f)pWZ—g(W+v) (945)

and the difference in energy flux is

(W2 +h3) (hy — hy)
%—w=w(l imz : (946)

Because the energy flux of the flow must decrease through the jump
hy > hy — the height of the fluid must increase downstream of the

jump. Substituting iy < hy into Eq. 944 shows that v;.,/ghy and

vy > \/ghy. The flow enters the jump supercritically and leaves the
jump subcritically.

Problems

1. Shock Entropy Show that the entropy of the fluid increases as it
passes through a shock. Hint: the equation of state of an isentropic
fluid is P = Kp” where the value of K increases with increasing
entropy.

2. Bomb Yield

Fig. 32 shows shocked air heated to incandescence about two
milliseconds after the detonation of a nuclear bomb. The height of
the device was 9o meters. What was the approximate yield of the
device?

ASTROPHYSICAL PROCESSES
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Figure 32: The explosion of nuclear
device in 1952 about 2 ms after detona-
tion.

3. Relativistic Shock

Find the incoming and outgoing velocity of a relativistic shock
in terms of the energy density and pressure on either side of the
shock.

4. Relativistic Bernoulli

Find the relativistic generalisation of Bernoulli’s equation for a
streamline (you can neglect gravitiy).

5. Bathtub Physics

When water flows into a bathtub, a circular hydraulic jump forms
around the incoming stream of water. If you assume that the flow
rate is constant and the flow is initially vertical, calculate the
height of the water downstream of the jump as a function of the
radius of the jump and the flow rate. You may neglect friction and
assume that the velocity upstream of the jump is constant. If the
bathtub is large compared to the radius of the jump and the walls
are vertical, how does the radius of the jump change with time?



Accretion and Winds

We continue looking at steady flows with two specific applications:
matter flowing onto an object (accretion) and matter flowing away
from an object (winds).

Spherical Accretion

We can apply what we learned about the de Laval nozzle to accretion
onto an astrophysical object. We will assume that the accretion is
steady at a rate M and that the pressure P « p7 with 1 < ¢ < 5/3.
First let’s write the continuity equation

10/,
23 (T PU) = (947)
so pur? =constant. Let’s write down the Euler equation

o, 10p GM _

or ' por r2 0 (948)

Let’s use the equation of state to eliminate p from the Euler equation
and use the continuity equation to eliminate p,

190 10, _, dp 9pdp oo
por  or? ar<w ) and or  dpor <o (949)
we get
dv 29, , , GM
We can rearrange this
1 2\ o  GM 2c2r
2(1_02>8r—_r2(1_GM)' (951)

Far away from the star, the sound speed cs approaches some constant
value, so the right hand side of the equation will be positive at large
r. We would like the gas to accelerate toward the star, so % < Oat
large distances. For this to be the case v < c¢s far from the star. As
the gas falls toward the star, it accelerates until it reaches the critical

radius. 5
2c5te
=1
oM (952)
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If we use ¢2 = yp/p = vkT we get

GM sl T\ '/ M
CE e Rk (1041<> M, ) 0%3)

that is much larger that most stars, so we have to worry about what

happens with r.. If the flow is subsonic when it gets to 7. it will
decelerate within 7. and the accretion stagnates. If the flow becomes
supersonic before reaching r, then % diverges as the flow becomes
supersonic. This is unphysical because you get two values of v” at a
single value of r.

The only viable accretion mode is for the flow to become super-
sonic precisely at .. It then accelerates for r < r. as well. We can
work further to determine the flow by integrating Eq. 948 to get a
Bernoulli equation

v? c2

2 y—1

GM
- = constant (954)

We know that as ¥ — o0, v2 — 0 so we have

> 2 —c2(0) GM
5t 1 r =0. (955)

At the critical radius we have v? = cg and GM/r. = 2c§, SO

cg(zrc) n Cg(rc%,_clg(OO) —282(r) = 0. (956)
We can find that
Bro) = () [ 525 ©57)
so
ro = C;ﬁ) ? (958)
and

2 1/(y-1)
] (959)

plre) = () | 525

We can determine

M

(5=37)/2(v=1)
4rtr?o(re)cs(re) = 7'[G2Mzﬂ <5 _237) (960)

c3(c0)
(

L ( M\? o) cs(00) -3
- 14 1 11 1( p S
x107gs <M®> {102455 em =3 | [10km s~ (961)

for 4 = 1.4. The gamma-dependent factor ranges from ¢3/2 for y = 1,
to5/2aty=7/5and 1aty =5/3.
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Figure 33: The solution to Bondi ac-
cretion with v = 7/5 (an adiabatic,
diatomic gas).
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Accretion Disks

The preceding section ignores an important aspect of accretion: the
angular momentum of the accreta. If the material starts with some
net angular momentum it can only collapse so far before its angular
velocity will be sufficient to halt further collapse. For the accetion to
proceed, angular momentum must be transferred outwards through
the accreted material or removed from the central regions with ejecta.
Understanding the production of ejecta is beyond our scope, but
examining the transport of angular momentum through a rotating
disk of material is not once we add an additional ingredient to our
analysis, viscosity.

First let’s see why angular momentum can play a crucial role in
accretion. If we assume that the material had some initial velocity v
relative to the star, and that without gravity it would come within
a distance b of the star (the impact parameter). The initial specific
angular momentum is vb. If the material conserves angular momen-
tum we can compare the centripetal acceleration with gravitational
acceleration to give

vb)>  GM
% =2 (962)
so the accretion will stall at
) v b \*Mg
=M - WAV Tmss1at) M (963)

Around this radius, the accretion flow must make a transition be-
tween a spherical inflow and a disk. Without viscosity the accretion
will cease, so the crucial ingredient to move further is a prescription
for the viscosity. Unfortunately, natural estimates for the microscopic
viscosity of astrophysical gas are too small by many orders of magni-
tude to account for the structure of accretion disks.

It is likely that accretion disks are turbulent magnifying the effects
of small-scale viscosity to larger scales. However, without simulating
the turbulence directly, it is difficult to estimate the effective viscosity.
Instead let’s assume there is some viscosity that we don’t know exact
and look at the angular momentum transport needed to maintain
accretion.

Angular Momentum Transport

The specific angular momentum of material in circular orbit is given
by the orbital velocity times the square of the radius,

=0 = (GMr)'/2. (964)



Because matter is falling toward the centre the angular momentum
flows inward
Lt = M(GMr)Y/2, (965)

Also some angular momentum ends up on the central object
L™ = BM (GMr))*? (966)

where r; is the inner radius of the disk. Therefore, there is a torque
acting in the disk

T = fp (27r) (20) (r) = LT = L= = M [(GMr)!/* — p(GMr1)'/?]
(967)
The viscous torque is the product of the viscous stress in the tangen-
tial direction, the area upon which the stress acts (the half-height of
the disk is /1) and the radius. The viscous stress is proportional to the
viscosity and the angular velocity gradient,

_ o dQ  d = 30\ _ 3
fo= Tanr ~ mdr( GMr )72;70' (968)

Both Eq. 967 and 968 give the stress. We can combine these two equa-
tions to yield the value of the coefficient of dynamical viscosity, 7,

Y

T= emhQ
For example we can now determine the energy generated per unit
area of the disk

(GMN)'Z — p(Gmr)' 2. (969)

9 3M GM 1/2
oty = PLEML 5 (1)) (o

o)
2hQ ~ 2hT B A oy r

Emission

If we assume that the energy is radiated through the surface we find
that the flux per unit area is half this value (two surfaces) and that
the total luminosity of the disk is

0 3 GMM
L= /7’1 Q2mtrdr = (2 — ﬁ) . (971)

Ty

If one assumes that the disk radiates locally as a blackbody, the spec-
trum is simply the sum of the various blackbodies (the so-called
multi-temperature disk model).

Vertical Structure

We have assumed that the disk is thin. Well, how thin is it? The pres-
sure gradient in the disk must resist the vertical component of grav-
ity. Since the disk is not self-gravitating, this force comes from the

ASTROPHYSICAL PROCESSES
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central object so we have

1P GMz P GM, . (P\VE( PN
p dz 2 v och T 3 o GM

Let us assume that the disk is thin, we have

h P\Y2, r \1/2 2T r 1 GMm,
r<<1’(p) (ew) <L, om SV <y 73)

~ 5 (o72)

so for the disk to remain thin, most of the gravitational energy that is
released as the material spirals down must be emitted. To determine
how the thickness varies with radius we can use the various scalings
in Eq. 972 and assume that the temperature is given by the effective

temperature of the surface. This is essentially assuming that the disk

is isothermal vertically. We know that Q) increases inward as r~3/2
and Tu o< 7374, s0

h p—3/8 1/8

PR —y ree (974)

The relative thickness of the disk remains nearly constant with radius
if only internal heating is important in a vertically isothermal disk.
Because the gas in the central plane of the disk can only be hotter
than at the surface, the thickness estimated in this manner is a lower
limit. Furthermore, close to the central object radiation from the
central object itself may heat the disk further, thickening the inner
regions.

We can do a bit better than this by calculating the temperature
gradient through the disk. We have (Eq. 120)

160T3 9T 4 9ocT* ¢ 9P.q
F@) = ~ 3 o~ 3 ox T kg oz 9P
40T
= hQ < (976)

- 3KR(Tc/ Pc)Pch

To go further we need an estimate of the density of the disk. We
know the accretion rate but the disk could be of relatively low mass
with material spiralling in quickly or of higher mass with material
slowly spiralling in.

Modelling the Stress

Looking back at Eq. 967, we find that stress has units of angular

momentum per unit time per unit volume or erg cm 3

in cgs units;
therefore, it is quite natural to assume that the stress is proportional
to the pressure f, = aP. Shakura and Sunyaev argued that the

viscosity is produced by turbulent eddies so its natural value is

= pvturblturb < PCsh (977)



where the inequality holds because the turbulent velocity is limited
by the sound speed, and the size of the eddies is limited by the thick-
ness of the disk. We know that the stress is given by

3 3
fo =51 < SpecshQ ~ pc; ~ P (978)

so the value of @ must be less than or equal to unity.
We can combine the a-stress with the angular momentum trans-
port equation to give

P (47Tr2h) - M [(GMr)“2 y (GMr,)“z} (979)

and substituting what we know about the vertical structure (i.e. P =~
ph?Q? from Eq. 972) to get

ah?0%p (47rr2h) =M [(GM;’)U2 - B (GMrI)l/z} : (980)
After some rearrangement we get
1 M r\/2] B2 1o ri\1/2
3_ 4 _p(L T -9 i _pg(L
h_a4np0[1 ‘B<r> }’72 thrQ[l ‘B(r> } (981)

The disk gets thinner as the value of « increases and gets fatter as the

infall velocity approaches the orbital velocity.

We can combine the a-prescription with vertical radiative transfer
(Eq. 975) to obtain an estimate of the central density and temperature
of the disk. First we shall assume that the photons domiante the pres-
sure and electron scattering dominates the opacity (i.e. the equation
of state and opacity at the midplane of the disk), so

1 40T,
P, =~ gaT4 = éTC ~ h*0%p, (982)
and ) )
4hQO*c 3M GM rp\1/2
Kes 872 1 [1 —b (7) ] (983)
Now combining Eq. 980 with Eq. 983, we obtain
12872 (3 rpy\1/2] 72
T 27 aQM, [ - (7> ] (984)
and . ,
3 Mikes rr\1/2
h_87r c [1 ﬁ(r) (985)

if we assume that electron scattering dominates the opacity and ra-
diation pressure dominates (appropriate for high temperatures).
Essentially, the thickness of the disk in this case is constant except
near the inner edge where it becomes thinner. The thickness increases
with the accretion rate and decreases rapidly with «.
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We can combine Eq. 984 and 985 to obtain an estimate of the pres-
sure in the midplane of the disk

2cQ)
Prph20% = 36
Pe Kootk (986)
and the ratio of the radial motion to the azimuthal motion
Oy M 9 DCMZKgS rp\1/2
— = = 1-8(— 8
Qr 4rtrphQr 6472 r2c2 p ( r ) (987)

9 (L \*7 /3 -2 iy 1/2
= (o) 2Gp) s o
Winds

We have already discussed material flowing away from an object in
the context of the Sedov solution that applies for explosions. Here we
are interested in the situation where the flow is more or less steady;
that is, it lasts for many dynamical times.

In our treatment of spherical accretion, the direction of the radial
velocity did not enter. The solutions looked the same whether the
matter flowed inward or outward, so the solution for spherical ac-
cretion may be useful here if the effects of angular momentum may
be neglected. Typically the radiation from the star drives the ma-
terial outward, so only the initial angular momentum of the gas is
important. At the surface of the star we know that the centripetal
acceleration must be less than the gravitational acceleration, so

212

L’;Q*) < GTzM (989)
at the surface of the star. The ratio of the centripetal acceleration to
the gravitational acceleration decreases as r ! as the material flows
outward, so within a few stellar radii the angular momentum is no
longer important to the dynamics of the flow. On the other hand, the
flow can carry away a significant amount of angular momentum from
the star, accounting for why stellar rotation decreases with age.

Because angular momentum is only important near the star, we
can use the results of § to understand winds as well. The crucial
difference is that the boundary conditions for a wind differ from
those for accretion. Let’s start with

v— — —= —(vr?) + - = 0. (990)

One can assume that the stellar wind is approximately isothermal
(y = 1) — if one assumes otherwise one gets Eq. 954. We can inte-
grate this equation to yield

2

GM
v 2 2y _ UM _
c;In (vr ) = Constant. (991)
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and after some rearrangement

— —In— —4In —
2 2
s cs ¢

v? v? r  2GM
— —— = Constant (992)

rc?
where v = ¢; atr = r. = GM/(2c2) for the critical solution from

Eq. 951 to yield

4
MZ—InM2:4lan+$—3 (993)
c

for the critical, transonic solution where M = v/cs.
Figure 34: The velocity structure for an

T T T T — T isothermal wind, neglecting angular
momentum and magnetic fields.

n 1 [ ]
o i ]
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Problems

1. Exact Solutions

For which values of 7 can the Bernoulli equation (Eq. 955) be
solved using elementary methods (linear, quadratic and cubic
equations of the form in Eq. 862). There are many, however only a
few have 1 < ¢y < 5/3.
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2. Monoatomic Gas

For a monoatomic gas, the value of y is 5/3. According Eq. 959,
the density at the critical radius is infinite, and the critical radius
itself goes to zero. Explain how accretion from atomic gas would
proceed.

3. Accretion Disk

Calculate the surface temperature of the accretion disk as a func-
tion of radius, central mass and accretion rate. You may assume
that all of the energy generated by viscous stresses is radiated
locally as blackbody emission. Calculate the cumulative amount
of flux as a function of temperature. Does most of the radiation
emerge from regions at high temperature, at low temperatures or
somewhere in between?

4. Bondi Solution

Generate a picture like Fig. 33 for the Bondi solution to spherical
accretion. Use v = 9/7.

5. Bondi Solution — Harder

Generate a Fig. 33 for the Bondi solution to spherical accretion.
Use vy =7/5.

6. Accretion Energetics

(@) Let’s use Newtonian gravity for simplicity here. How much
kinetic energy does a gram of material have if it falls freely from
infinity to the surface of a star of mass M and radius R?

(b) How much energy is released if a gram of material falls from
a circular orbit just above the stellar surface onto the stellar
surface? To put it another way, what is the kinetic energy of the
material in the circular orbit?

(c) Hydrogen burning releases about 6 x 10'® erg/g. How does
accretion of hydrogen onto a neutron star (R = 10 km, M =
1.4Mg) differ from accretion onto a white dwarf (R = 10000 km,
M = 0.6Mg)?

(d) What is the total about of energy released per gram of ma-
terial as it falls from infinity to the surface of a neutron star?
How many grams of material would have to fall each second on
the neutron star to generate an Eddington luminosity through
accretion? This is called the Eddington accretion rate.

7. A Simplified Accretion Disk This is a simplified model for an
accretion disk. It is simpler than the model outlined in the chapter
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but it will give the right order of magnitude for things. We are also
using Newtonian gravity.

(a) Let’s divide the accretion disk into a series of rings each of
mass dm. What is the total energy of a ring at a distance r from
the central black hole of mass M?

(b) Let’s say that the ring shrinks by a distance dr. What is the
change in the energy of the ring (dE/dr)? As the ring shrinks
mass is moving toward the black hole. Divide both sides the
answer to (b) by dt to get an equation for the energy loss rate
per radial interval.

(c) What is the energy loss rate per unit area?

(d) Let’s assume that this energy is radiated at the radius where it
is liberated. Using the blackbody formula what is the tempera-
ture of the surface of the disk?

(e) Let’s assume that the disk extends from an outer radius 74
to an inner radius rp. What is the total luminosity of the disk
if the accretion rate is dm/dt? What and where is the peak
temperature of the disk? What and where is the minimum
temperature of the disk?

(f) Sketch the spectrum from the accretion disk on a log-log plot.
You can use temperature units for the energy axis (i.e. kTax
and kTmin). To do this you will have to think about the peak
flux from a blackbody at a particular temperature and the size
of the disk that radiates at Trnax and Tpin.

(g) The accretion rate is determined by the evolution of the orbit
of the black hole with its companion, so it doesn’t know about
the Eddington limit of the black hole. What do you suppose
happens if the rate that matter falls onto the disk exceeds the
Eddington limit?

(h) What major bit of physics has been left out of this analysis?
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Fluid Instabities

Gravity Waves and Rayleigh-Taylor Instability

Figure 35: Shearing flow in a stratified

R fluid
p,U*>
z={_(x,1)
p/’ u/
z=—HW

Let’s imagine a different type of wave on a fluid. Let’s imagine we
have two fluids in a gravitational field. The lower fluid has density
o', velocity U’ and thickness ' and the upper fluid has density p,
velocity U and thickness h. Let’s have {(x, t) denote the displacement
of the interface in the z—direction. Let’s assume that both fluids are
incompressible and the flow is irrotational, so we can define

v=-V®andVv = -V (994)

where
®=-Ux+pand & = —Ux+¢. (995)

To make further progress let us assume that the displacement of the
interface has the form

C(x,t) = Acos (kx — wt) (996)

and furthermore let velocity potentials also have a similar depen-
dence

¢ = Csin (kx — wt) f(z) and ¢’ = C’sin (kx — wt) f'(z). (997)
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Because the fluids are assumed to be incompressible, we have V¢ =
0 and the boundary condition gives d¢/dz = 0 at z = h and similarly
for lower fluid, so we have

¢ Csin (kx — wt) cosh [k(z — h)] (998)
¢' = C'sin(kx —wt)cosh [k(z+H')]. (999)

The Lagrangian derivative of the displacement of the interface
D((x,t)/ Dt gives the vertical velocity of the fluid at the interface,
dp ¢ 8@ a9’ 97

SO a
_dp _ dC _ 99 ;00
oz ot T U ? oz ot Uy

This yields a relationship between the constants A, C and C/, the

(1000)

wavenumber and frequency,

A (kU —-w) = —kCsinhkh, (1001)
A(kU'—w) = kC sinhkh'. (1002)

We seek a relationship between w and k, so we require an additional
equation to eliminate the unknowns A, C and C’. Specifically, the
pressure on each side of the interface must be equal. To examine the
pressure let’s look at Euler’s equation for the ideal fluid (Eq. 819) and
substitute V = —V® to yield

ovVd 1 VP
e 4 VVZ = g2 (1003)
ot 2 0 $2

Since the fluid is incompressible we can write

9P V2P
v ~5F +—+p+gh =0, (1004)

so for each fluid we have

o v?
—p5; tey tgzet+p = B(l), (1005)

oD’ /2
ey p’% +go'z+p = B(t). (1006)

At the upper and lower surface the velocity of the perturbation van-
ishes and p(z = —h') — p(z = h) must equal goh + gp'l, so

puz p/ u/Z

B(t) - B'(t) = 5 >

(1007)

Let’s take the difference of the two Bernoulli equations and evaluate
itatz = {(x,t) to yield

ap p(_9¢" 99
p(—at—ua + g) (—at—u -~ §) (1008)
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to first order in the small quantities ¢ and ¢’. Substituting the expres-
sions for ¢, ¢’ and ( yields

p [Ccoshklt (w — KU) + gA] = o' [C coshklt (w — kU') + gA] .
(1009)
Combining this result with Eq. 1001 and 1002 yields the equation,

o (w — kU)? coth kh + o' (w — kll’)2 cothkh' =kg (' —p), (1010)

and the dispersion relation,

w _ pUcothkh + p'U’ coth kK’
ko o cothkh + p’ coth ki’
! / / n271/2
g o —p _ pp' cothkhcothkh' (U —U")", 011)
k pcothkh + o' cothkl’  (pcothkh + o cothkh')?
The first interesting limit is where U = U’ = 0 which yields the
simpler expression
w? _ g o —p
k2~ k pcothkh + p’ coth ki’ (1012)
If o’ > p, then w? > 0 and we have a stable wave. There are several
interesting limits to this result.
e If p = 0, then w? = gktanhkh.
e If p = 0 and kk >> 1, then w? = gk (deep-water waves).
e If p = 0 and kk < 1, then w? = ghk? (shallow-water waves).
e If p #0, ki’ > 1 and kh > 1, then (both liquids very deep)
/ F—
o2 = ke —p) (1013)
pEp
e If p #0, k' < 1and kh < 1, then (long waves)
I /
W = kZM (1014)

oh' +p'h

On the other hand if p’ < p, then w? < 0 and the perturbation
simply grows (it does not oscillate). This is the Rayleigh-Taylor insta-
bility. This instability occurs whenever a low density gas underlies a
higher density gas, for example in a supernova explosion. The grav-
itational acceleration ¢ can be due to gravity (as in a supernova) or
due to a deceleration of the fluid, if a low-density fluid plows into
a high-density fluid. According to Eq. 1014 the smallest scales have
the highest growth rates. This is countered by viscosity and surface
tension, so a particular scale dominates the growth at least initially.
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Kelvin-Helmholtz or Shearing Instability

If we look at the term in the brackets in Eq. 1011 for U # U’ we see
that if ¢ = 0 waves with all values of k are unstable and if ¢ # 0 for
sufficiently large values of k (small wavelengths), waves are unstable
even if p’ > p. The critical value of k is

I'4 o' — p pcothkh + o' coth ki’
(u—u)? e coth kh coth kh'

kerit = (1015)
and for k > kgt the growth rate increases monotonically. In reality
for really small wavelengths other effects come into play, such as sur-
face tension and viscosity; therefore, unless the velocity difference is
sufficiently large, waves will not grow, and furthermore a particular
wavelength grow the fastest.

We have also assumed that the velocity change is abrupt. It turns
out that even if the velocity changes gradually with position, the flow
is unstable, so we would like to get a heuristic understanding of the
Kelvin-Helmholtz instability. We have two fluids moving in opposite
directions along their shared interface which may be thick. We do not
include gravity.

Let’s assume that the flow is initially steady and irrotational that
so we have Euler’s equation

p

(V-V)V+ Vp =0 (1016)

We know that 1
Esz =VXx(Vxv)+(v-V)v (1017)

which yields
%VV2 + VP =0 (1018)
d

- 1V2 + P_ tant (1019)
5 0 constan 019

for the flow. Therefore, regions where V? is large have lower pres-
sure. In the figure we have chosen a reference frame where the fluids
are moving with equal and opposite velocities. We will also assume
that the depths of both fluids are really large and the densities are
equal. Therefore, the picture of what goes on in one fluid is mirrored
in the other. If we focus on the wrinkle in the interface on the right
hand side, the upper fluid must travel a bit farther to get around the
wrinkle than the lower fluid, so it must travel faster and according

to Eq. 1019, its pressure must drop more than the fluid below the
interface. The pressure on the inside of the curve is greater than on
the outside. These pressure gradient causes the wrinkle to grow. We
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could even imagine a rubber sheet or less dramatically a layer of fluid
moving at intermediate velocities lying along the interface and the
forces would still be the same, and the instability remains.

Figure 36: Illustration of shearing flow
with pressure gradients

— v/2

Gravitational Instability

Let’s revisit our small sound waves but this time we will include the
effects of self-gravity. have

dp _ 9’ ’_
E—i—V (pV)—ganoV V' =0 (1020)
and
A% vP dv VP oV VI '
§+(VV)V+T—E+7—W+ 00 ——VCP (1021)
We can write P’ = (dP/dp)sp’ and rewrite the continuity equation to
get
or’ oP y
ﬁerO (ap)sV-V =0 (1022)
Let’s take the divergence of the Euler equation to get
ov.-v'  v2p 2
ot + 00 =-V 4) (1023)

and the time derivative of the continuity equation to get

92p’ op oV’
W +PO % : W =0. (1024)
S

Finally we put the two together to get

o*P' (9P 2 2\
FT <3P>S (V P+ poV (])) =0. (1025)
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This is a wave equation with a sound speed of ¢2 = (dP/dp)s but
there is an extra term.

V3¢ = 4nGp' (1026)
We can write P’ = c2p’. This eliminates density from the equation to
get
PP 292 — 4nGpoP' = 0
o — CEVAP —47iGpoP’ = 0. (1027)

Let’s try a trial plane wave to find a solution to this equation

P’ = p'expli(k-r— wt)] (1028)
We get
—w* + cgk2 —41tGpy =0 (1029)
o)
w? = c2k* — 4ntGpy. (1030)

If k> > 47Gpy/c?, then w? > 0 and the wave is stable. On the other
hand, if k* < 47Gpy/c?, the perturbation will grow. We can define a
Jeans length

l _ T il c (1031)
Jeans kcrit GPO s 3
and a Jeans mass
4 4 | 7°
Means = 5 13 = 5 3
il 3 Tteans 0 3 G3p0 Cs (1032)
—-1/2 3
— 14 x 10%* _ pPo _ &
X 0 g |:10_24g Cm_3 10km S_1 (1033)
Thermal Instability

So far we have examined instabilities where energy does not leave
or enter the fluid. In general hot gas emits and absorbs radiation; it
may release energy through nuclear or chamical reactions as well. If
the power absorbed and generated within the gas equals the power
emitted by the gas, the temperature of the gas will remain constant
and equilibrium is achieved. The question remains whether this
equilibrium is stable. Heuristically we can see that if the cooling rate
increases faster with temperature than the heating rate, then a slight
increase in temperature will result in the gas cooling faster and the
temperture returning to its equilibruum value. On the other hand,

if the heating rate increases with temperature faster than the cooling
rate, the slight temperature increase will be compounded with a
further increase in temperature.
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Problems

1. X-ray Bursts:
We will try to model Type-I X-ray bursts using a simple model for
the instability. We will calculate how much material will accumu-

late on a neutron star before it bursts.

(a) Let us assume that the star accretes pure helium, that the
temperature of the degenerate layer is constant down to the core
(T¢), how much luminosity emerges from the surface of the star?

(b) Let us assume that the helium layer has a mass, dM, and that
the enregy generation rate for helium burning is given by

€30 = 3.5 x 10°°T, 3 exp(—4.32/ Ty)ergs ‘g~ !

where Ty = T/10°K. The energy generation rate is a function
of density too, but let’s forget about that to keep things simple.
How much power does the helium layer generate as a function
of dM?

(c) Equate your answer to (a) to the answer to (b) and solve for
dM. This is the thickness of a layer in thermal equilibrium.

(d) Let’s assume that the potential burst starts by the temperature
in the accreted layer jiggling up by a wee bit. If the surface
luminosity increases faster with temperature than the helium
burning rate, then the layer is stable. Calculate dLqyyface/dT and
dPhelium/dT'

(e) Calculate the value of dM for which dPyejjum/dT exceeds
dLgurface/dT and the layer bursts.

(f) Equate your value of dM in (c) and (e) and solve for T. What is
dM? How long will it take for such a layer to accumulate if the
star is accreting at one-tenth of the Eddington accretion rate?
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Mathematical Appendix

The Integral of x>/ (e* — 1)

The integral can be evaluated using a Taylor series
o8] 3 0 43,—X © 0
x x’e 3 -
/0 ex—ldx:/o 1_e_xdx:/O x ng;le "dx (1034)

Let’s look at each term in the sum (we can do this because each term

in the sum is a convergent integral)

/ xPe W dx = %/ ude "du. (1035)
0 n* Jo
The integral
/ Wetdu = —uBe | +3/ u?e "du (1036)
Jo 0 0
and
/ ude Mdu =3 (uze_” . +2/ ue‘“du) (1037)
Jo Jo
and
/ wde ™ "du =3 x 2 x (ue‘”lgo + / e‘”du) =6 (1038)
0 Jo
to yield
0 X3 ® 4
/0 ex—ldx:n;lﬁ' (1039)

This result can be generalized to yield

oy © T(a+1
/0 exx_ldx:’;(“w;”:r(oc—i-l)g(anLl). (1040)

For odd positive values of « the summation can be solved with con-
tour integration. Let’s start with

© 1
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to evaluate. We will use a basic result from complex analysis that the
integral of an analytic function around a closed contour vanishes if
the contour contains no poles. Let’s examine the function

7T cot( 7tz
fla) = T 4, (1041)
that has polesatz = ..., —2,—-1,0,1,2... and for large values of z

f(z) quickly approaches zero, so the integral

R— o0

lim A f(z)dz=0 (1042)

where Cy is a circle of radius R. The sum of the integrals about all
of the poles must vanish. Fig. 37 shows all of the poles. At the poles
(solid points in the figure) other than at the origin, the function is
given by

flz)m 4t

~ (1043)

that we can integrate along the loops in the figure by substituting
z =n+ Re" so dz = iRedf and

2 1 ]

. " _ . . 19 _ l .27-[ _ . 1
lim ¢ f(z)dz = lim iRe"do = ﬁ/o de = Zmﬁ

R=0.Jcg R50Jo  n* Re
(1044)
where Cp is a circle of radius R centered on the pole. Let’s combine

this result with the integral around the large loop (Eq. 1042) to give

o 1 .
0 = 47 ;12:1 prins Il{lg}) 7{313 f(z)dz (1045)
where the first term is the sum we seek and the second term is an
integral is over a circle surrounding the origin. The leading term in
the integral about the origin is proportional to z=°> and ¢z "dz = 0 if
n # 1, so we have to look at higher order terms, specifically

f(Z):*—g—TSZ-F--- (1046)

Figure 37: The poles of f(z) in the
complex plane



so we have
0—4m’ii+2m’ —14 (1047)
=t 45 47
and . .
> 6 7T 7T
Z S =605 =% (1048)

Parseval’s Theorem

We have stated a rather useful result,

/°° |E(t)|2dt:27r/oo 1B (w)2dw. (1049)

—00

We now have the tools to prove it quickly,
/ E()2dt = / dt / E(w)e " de. / E* (w)e“!tios0)
= / / / dtdw' dwE (') E* (w)e ™« eiChos1)

The integral over time is simply Fourier transform of 27e~ @'t which
we know,

/oo |E(t)|’dt = 27 /00 /OO dw'dwE(w')E* (w)é(w — ') (1052)

= 2n /j:o dwE(w)E*(w) =27 /O:O |E(w)[>davs3)
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Chapter 1

1. Hot Cloud

X-ray photons are produced in a cloud of radius R at the uniform
rate (photons per unit volume per unit times). the cloud is a dis-

tance d away. Assume that the cloud is optically thin. A detector

at Earth has an angular acceptance beam of half-angle Af and an
effective area A.

(a) If the cloud is fully resolved by the detector, what is the ob-
served intensity of the radiation as a function of position?

(b) If the cloud is fully unresolved, what is the average intensity
when the source is in the detector?

Answer:

(a) If the source is resolved, we can discern different parts of the
cloud, so the observed intensity is the integral of the emission
coefficient through the cloud,

- VRZ-PE T r r b2

I[= [jds= —ds=—VR -2 =_—Ry/1- —
/]ds _JRE? 47-cds 27 b 27 R2

(1054)

where b/R is the relative distance between our line of sight and

the centre of the cloud.

(b) If the source is not resolved, the observed intensity is given
by the flux from the source divided by the solid angle of accep-
tance of the detector.

F $nRT 1 I'R3

= = (1055)

I =
TAG? Arrd? AG?  3md2A62

Clearly, this is the minimum value of the actual intensity of the
source because it may actually subtend a smaller region of the
sky that A0 but we have no way of know because our detector
cannot resolve below this scale.

3. Blackbody

Only one or no neutrinos can occupy a single state. Calculate the

spectrum of the neutrino field in thermal equilibrium (neglect the
mass of the neutrino). Neutrinos like photons have two polariza-

tion states. What is the ratio of the Stefan-Boltzmann constant for
neutrinos to that of photons?

Answer:

The main difference between the neutrinos and the photons is the
partition function. The mean energy of the neutrinos with a certain
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value of v is
211:0 nhvefnhv/kT

E= ST (1056)
For photons the sum is from o to infinity. So we have
2h V3
Bu(T) = 2 oo /AT 717 (1057)

for neutrinos. The ratio of the Stefan-Boltzmann constants is

CJo B+t 7At/120 7
a3 —1) /158

(1058)

. Surface Emission from the Crab Pulsar: The neutron star that
powers the Crab Pulsar can be assumed to have a mass of 1.4M,
and a radius of 10 km with constant internal density and an ef-
fective temperature of 10° K. The frequency of the Crab Pulsar is
30 Hz and its period increases by 38 ns each day. Compare the
power from the surface emission to the power lost as the neu-
tron star spins down. The total power of the Crab Nebulae is
about 75,000 times that of the Sun. What is the likely source of
this power?

Answer:

The blackbody flux from the surface of the star is given by

F = 4nR?cT* =7 x 102 erg/s = 7 x 10® W = 0.17Ls.  (1059)

As the neutron star spins down it loses kinetic energy at a rate

9E _ 100 = —4m2P1P = —5x 10 erg/s = —5x10°' W = 10°L,

dt

(1060)
where I ~ %MR2 ~ 10¥gcm?. The spin-down power is approx-
imately the power needed to power the nebula so it is a possible
source of energy.
. Power-Law Atmosphere
Assume the following

* The Rosseland mean opacity is related to the density and tem-
perature of the gas through a power-law relationship,

KR = Kop"TP; (1061)

* The pressure of the gas is given by the ideal gas law;

¢ The gas is in hydrostatic equilibrium so p = g% where g is the
surface gravity; and
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e The gas is in radiative equilibrium with the radiation field so
the flux is constant with respect to z or Z.

Calculate the temperature of the gas as a function of .

Answer:

First we take the equation of radiative transfer

160T° 9T _ 160T° 9T
3kg 0¥ 3xop*TF 0%
We eliminate the variable p using the ideal gas law and the equa-

F(z) = —

(1062)

tion of hydrostatic equilibrium,

1
g = T okT (1063)
4
so we have 5 u
IT _ 3K0 yupp-a-s ( MMy
3T~ T60E- | ook (1064)

which can be integrated by the separation of variables to yield

T4+a—p 3k ya+l pm, i3
4+a—B 160Fa+1 <gsk>

(1065)

7. Goggles

Calculate from thermodynamic principles how much objects are
magnified or demagnified while viewed through goggles under-
water. N.B. The wavenumber of a photon of a given frequency is
proportional to the index of refraction.

Answer:

If we have a blackbody underwater and a blackbody in air at equal
temperatures, the underwater blackbody will emit

Fuater = n2Fair (1066)
energy per unit area per unit time. You can see this from the defi-
nition of the density of states

0s = Amk2dk = 47 (%)2 d (%) (1067)

which is larger by a factor of 13, so the energy density within the
water of the blackbody radiation is larger by a factor of n% than
in air. However, flux is related to the intensity which is energy
density times the velocity so the flux is only larger by a factor of

n2.

For the underwater blackbody to absorb as much as radiation from
the blackbody in air as the blackbody in air receives from it, the
solid angle subtended by the underwater BB must be larger by n?
so it is magnified linearly by a factor ofn ~ 1.33.
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Chapter 2

1. Coulomb’s Law
Derive Coulomb’s law from Maxwell’s Equations
Answer:

The first of Maxwell’s equations is
V-E= 47p (1068)

Let’s assume that there is a single charge q located at r=o0 and
integrate over a spherical region centered on the origin we get

/V dVV -E = /dV47Tp =4mg (1069)

However the integral of the left-hand side is a integral of a diver-
gence over a volume so we have

/a dVV -E = /E -dA = |E|47R? = 471q (1070)
1%

SO
E = %f’ (1071)

2. Ohm’s Law

In certain cases the process of aborption of radiation can be treated
by means of the macroscopic Maxwell equations. For example,
suppose we have a conducting medium so that the current density
j is related to the electric field E by Ohm’s law: j = ¢E where
o is the conductivity (cgs unit = sec~'</sup>). Investigate the
propagation of electromagnetic waves in such a medium and show

that:
(a) The wave vector kis complex k2= % where m is the com-
plex index of refraction with
4ric
m? = ue <1 + e ) (1072)

(b) The waves are attenuated as they propagate, corresponding to
an absorption coefficient.

&= —3(m) (1073)
Answer:
Let’s take the third and fourth of Maxwell’s equations

. 10B
VXE__EE (1074)
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and .
. 4w~ 10D
H="— -
V x LT (1075)
Let’s substitute
yﬁ = B,D =¢€E (1076)
and
] =0E (1077)
to get
- 47T - 1 BE
B=uor—E+ —ue—
V x no— + Hes; (1078)

Let’s take the curl of this equation to get

—V2B = ;40*477{V x E + %‘ueavaj £ (1079)

and substitute in the other Maxwell’s equation to get

470B 1 i}?

V2B = o2
V<°B WO 35 ~ aMesn (1080)
Let’s substitute
B =B, exp [z’ (E X — wt)} (1081)
to get
4 1 2.2
K = ipto'c—?w + C—zyewz = wcgn (1082)
with A
m? = UE <1 + i(;f) (1083)

If we substitute this into the formula for the wave we find

B = Byexp {i (E-f—wt” = Byexp [i (%Ev’c’—wt)} exp {—%Ef}
(1084)

c
wSm*

so the magnetic field decreases with a mean-free path
The energy is proportional to B2 so the absorption coefficient is

e

3. The Edge of the Crab

Fig. 5 shows the x-ray emission of the Crab pulsar wind nebula at
a distance of 2 kpc. The x-ray emitting gas is contained by mag-
netic fields causing the x-ray emission regions to end sharply. We
can relate the frequency of the emission to the energy of the elec-
trons and the strength of the magnetic field by

2
w:( E ) eB (1085)

Mec? ) mec
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and assume that the electrons are relativistic so their inertial mass
is E/c?. Use the sharpness of the emission regions to determine
the energy of the electrons and the strength of the magnetic field.

Answer:

Let’s assume that the particles are doing cyclotron motion so

mo?
F=—=—vxc¢m~

— 86
r c c? (1086)

SO E
— =¢eB,E = eBr
r

where r < 2 kpc x 1 arcsecond = 2000 AU and we also know that

w lies in the X-rays, so fiw ~ 1 keV and

e E e

w=E’B—— = E*——
m3cd er mac5

SO -
3 _ 3.5 3 _ MW

E° = m;c’wr, B> = <)

The fact the the edge is unresolved yields an upper limit on the
energy and a lower limit on the magnetic field strength. If we use
hw = 1 keV, we obtain

E<6x108%eV,B>7x10"1G

. Momenta This problem is meant to deduce the momentum and
angular momentum properties of radiation and does not recesarily
represent any real physical system of interest. Consider a charge
Q in a viscous medium where the viscous force is proportional to
velocity:

Fyise = —po (1087)
Suppose a circular polarized wave passes through the medium.
The equation of motion of the charge is

dv
mE = Fyisc + Frorentz (1088)

We assume that the terms on the right dominate the inertial term
on the left, so that approximately

0 = Fyisc + Frorentz (1089)

Let the frequency of the wave be w and the strength of the electric
field be E.

(a) Show that to lowest order (neglecting the magnetic force) the
charge moves on a circle in a plane normal to the direction of
propagation of the wave with speed QE/B and with radius

QE/(Bw).
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(b) Show that the power transmitted to the fliud by the wave is
QZ E2 / ,3

(c) . By considering the small magnetic force acting on the particle
show that the momentum per unit time (force) given to the
fluid by the wave is in the direction of propagation and has the
magnitude Q*E2/(Bc).

(d) Show that the angular momentum per unit time (torque) given
to the fluid by the wave is in the direction of propagation and
has magnitude +Q*E?/(Bw) where the + is for left and — is for
right circular polarization.

(e) Show that the absorption cross section of the charge is 4tQ?/(Bc).

(f) If we regard the radiation to be composed of circular polarized
photons of energy E, = hv, show that these results imply that
the photon has momemtum p = h/A = E,/c and has angular
momemtum | = +# along the direction of propagation.

(g) Repeat this problem for a linearly polarized wave

Answer:

(a) We have 7 = %E . The electric field traces a circle so the parti-
cle traces a circle with a speed % The angular velocity of the

particle is w of the wave, so wr = % sor = % Bw.

(b) Power is Q7 -E = QZEZ.

(c) The magnetic force is in the direction 7 x B but the velocity

points in the direction of the electric field so the force is in the
direction E x B, the direction of propagation. The magnitude
of magnetic field equals that of the electric field so we have

. QZEZ

— o
(d) Torqueis7 x F =

(e) The cross section is power absorbed divided by the Poynting
vector

212 _ 2
- QﬁE [éEz] - 47;?

(f) If the wave comes in energy units of hv. The ratio of the mo-

(1090)

mentum unit to the energy unit must be the ratio of the force
(momentum per unit time) to the power (energy per unit time),
so we get

Q?F? hv
Be QZﬁE2 T (1091)

The ratio of the angular momentum unit to the energy unit

hv

must be the ratio of the torque (angular momentum per unit
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time) to the power (energy per unit time), so we get

QE? B = h—v =h (1092)

h
Y Bw Q?E? w

(g) For the linearly polarized wave, the particle moves up and
down sinusoidally. The size of the up and down path is twice
the value of R above (the circle is squished along one axis to
be a line). The velocity varies sinusoidally, the power magnetic
force vary as sin? wt. The torque vanishes. The cross section is
the same as is the momentum of a photon. The angular momen-
tum vanishes (because the torque vanishes).

. Maxwell before Maxwell

Show that Maxwell’s equations before Maxwell, that is, without
the “displacement current” term, ¢! aa—?, unacceptably constrained
the sources of the field and also did not permit the existence of

waves.
Answer:

Let’s take the divergence of the Maxwell’s equation

— 47'[—» 185
Vfo—]—i-zg (1093)

to get

47 -
0= Tv -] (1094)
where we have left the displacement current out. This states that
the divergence of the current must vanish, which means that either
charge is not conserved or that the charge density is constant
(neither is good).

Let’s take the curl of the Maxwell’s equation

=

V2B =0 (1095)

and we would get the same thing for the electric field. This is not a
wave equation.

. Coulomb gauge Derive the equations describing the dynamics of
the electric and vector potentials in the Coulomb gauge

V-A=0

Look at the equation for the electric potential. What is the solution
to the electric potential given the charge density p? Why is this
called the Coulomb gauge?
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How does the expression for the scalar potential in the Coulomb
gauge differ from that in the Lorenz gauge? What is strange about
it? Is it physical?

Now look at the equation for the vector potential. Show that the
LHS can be arranged to be the same as in the Lorenz gauge but
the RHS is not just the current but the current plus something else.

Show that the RHS can be expressed as

4
77—[ (J - Jlong)

where
1 \VAR |
Jlong = - 7
4 Ix — x/|

d3x

Answer: In the Coulomb gauge the scalar potential follows Coulomb’s
law
V2 = —4mp.

That is why it is called the Coulomb gauge. The potential every-
where right now depends on the charge here right now, so it is
acausal (strange); however, because we cannot actually measure
the scalar potential the acausality has no physical consequence.

Now for the vector potential

2
VZA_laiA_ (1847> :_4£]

where

_ Loy _ 1 1
Jiong = 47rv<at)_47rv( ot |x—x/|dx)
- () = (e

What remains of the current after subtracting the longitudinal

current is the transverse current which is given by the expression

1 J
Jtrans = EV x V (/ |x—x’|d3x)

so the source for the wave equation for A is given by the trans-

verse current alone.
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Chapter 3

1.

Constant Velocity Charge

Show that if charge is not accelerating, the electric field vector
points to the current (not the retarded) position of the charge.

Answer:

. Synchrotron Cooling;:

A particle of mass m, charge g, moves in a plane perpendicular to
a uniform, static, magnetic field B.

(a) Calculate the total energy radiated per unit time, expressing
it in terms of the constants already defined and the ratio v =
1/4/1 — B2 of the particle’s total energy to its rest energy. You
can assume that the particle is ultrarelativistic.

(b) If at time t = 0 the particle has a total energy Ey = Yomc?,
show that it will have energy E = ymc? < Eg at a time t, where

tN3m3c5 1 1
T2 B2 \y )

The synchrotron power is given by the power emitted by a particle
performing circular motion

_ 2 ¢ ,(dp 2
Pr=350a7 (dt

where for an ultrarelativistic charged particle in a magnetic field

Answer:

we have p
P
Pl _ B
‘dt 1
SO
_2 ‘75 2p2 . dE 2dy
PL_3m2c3,Y TR,
and

dy 2 9 oo
- =5 By~
dt 3m3cs
Separating the variables and integrating yields the required an-

SwWer.
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5. Classical HI: A particle of mass m and charge g moves in a circle

2
due to a force F = —i‘j—z. You may assume that the particle always
moves non-relativistically.
(a) What is the acceleration of the particle as a function of r?

(b) What is the total energy of the particle as a function of 7? The
potential energy is given by —q%/r.
(c) What is the power radiated as a function of r?

(d) Using the fact the P = —dE/dt and the answer to (2), find
dr/dt.

(e) Assuming that the particle starts with r = r; at t = 0, find the
value of t where r = 0.

(f) Let’s assume that g = ¢, the charge of the electron, and m = m,,
the mass of the electron. Write your answer in (4) in terms of r;,
ro (the classical electron radius) and c.

(g) What is the time if r; = 0.5A(for an hydrogen)?
(h) Compare this to the lifetime of a hydrogen atom.

Answer:
(a)
2
|
U=
(b)

where I used

for circular motion.

(©

po 20 20 (‘12)2

38 36 \r2m
(d)
dE _d ( 14\ _1q%dr
dt —dt\ 2r ) 2724t
dE ., 2¢° 1 _1¢*dr
dar T 3m2c3 4T 2724t
dr 4t 1

dt ~ 3m23 2
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(e)
2.3
= Oﬂdr: _3m2 ’ /Orzdr: e
T dr 4 4 i 4q4
()
r3m?c3 1 7 2
t= L — ri | —
4et 4c ' \ rg
(8)

ro=282%x10" ¥ em,1A =108 cm

1
= ——————
12 x 1019e¢m /s
(h) It is much smaller than the lifetime of a hydrogen atom.

0.5 x 107% em(17000)2 = 1.2 x 10~ s

. The Eddington Luminosity:

There is a natural limit to the luminosity a gravitationally bound
object can emit. At this limit the inward gravitational force on a
piece of material is balanced by the outgoing radiation pressure.
Although this limiting luminosity, the Eddington luminosity, can
be evaded in various ways, it can provide a useful (if not truly
firm) estimate of the minimum mass of a particular source of
radiation.

(a) Consider ionized hydrogen gas. Each electron-proton pair has
a mass more or less equal to the mass of the proton (1,) and a
cross section to radiation equal to the Thompson cross-section
(o).

(b) The radiation pressure is given by outgoing radiation flux over
the speed of light.

(c) Equate the outgoing force due to radiation on the pair with the
inward force of gravity on the pair.

(d) Solve for the luminosity as a function of mass.

The mass of the sun is 2 x 10%3g. What is the Eddington luminos-
ity of the sun?

Answer:

(a) OK

(b) P= g = #ﬂc

(¢) Fout = Por = ﬁ, Fy = %

(d) Fin = Fout for L = Lgqq s0 Lpgq = %

() Lpaq = 1.26 x 10%erg/s (Mﬂ) — 32 % 10* (Aﬁff) Lo.
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Chapter 4

1. The Ladder and the Barn: A Spacetime Diagram:

This problem will work best if you have a sheet of graph paper.

In a spacetime diagram one draws a particular coordinate (in our
case x) along the horizontal direction and the time coordinate
vertically. People also generally draw the path of a light ray at 45°.
This sets the relative units of the two axes.

(a) Draw a spacetime diagram and label the axes x and t. The
t-axis is the path of Emma through the spacetime.

(b) Draw the world line of someone travelling at % of the speed
of light. The world line should intersect with the origin of the
spacetime diagram. Label this world line #'. The t'-axis is the
path of Kara through the spacetime.

(c) Draw the x’ axis on the graph. Here’s a hint about where it
should go. The light ray bisects the angle between the x and
t axes. Kara who is travelling along ' will find that the speed
of light is the same for her, so the light ray must also bisect the
angle between x’ and #'.

(d) Parallel to Emma’s time axis draw the walls of the barn in
pencil. The barn is 4.5 meters wide in Emma’s frame.

(e) Draw Kara’s ladder along Kara’s x-axis. The ladder is 5 meters
long in Kara’s frame. How long is it in Emma’s frame.

(f) Draw the world lines of the ends of Kara’s ladder. These lines
are parallel to Kara’s time axis.

(g) Erase a portion of the barn walls to allow Kara’s ladder to fit
through.

(h) Using the diagram, explain how Kara and Emma can under-
stand how the too-long ladder fits in the too-small barn.



ASTROPHYSICAL PROCESSES 209

t Emma t' Kara

Barn

—

Erase the sections between the arrows. Emma sees the ladder
inside the barn with the two doors closed at the same time. Kara
sees the forward door open before the back door has shut.

2. The Fermi Process:

One model to understand how cosmic rays are accelerated is
through shocks. The main idea is that a charge particle can cross
a shock and turned around by the tangled mangetic field and
recross the shock. Each time the charge does this it gains energy.

To understand this let’s use a simplified model in which two mir-
rors are travelling toward each other at some velocity v. When

a particle hits the mirror, its energy in the frame of the mirror
remains unchanged but its velocity and therefore the spacelike
components of the four-momentum change sign.

(a) Draw a diagram with the two mirrors.

v=fc v=—Bc

(b) For argument’s sake, let’s first focus on the mirror on the left
and consider that the mirror on the right is moving. What is the
four-velocity in this frame of the mirror on the left (Ul” )? What
is the four-velocity in this frame of the mirror on the right (U})?
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—Y0
ul = ul=| 7

S O O 0
o

0

(c) Now let’s focus on the mirror on the right and consider that
the mirror on the left is moving. What is the four-velocity in
this frame of the mirror on the left (Ul’” )? What is the four-
velocity in this frame of the mirror on the right (U;y )?

e
w_ | Y0 Bo_
uf = ul =
0

S O O o

(d) To start let’s assume that the particle of mass m approaches
the mirror on the left at the velocity of the mirror on the right.
What is the four-momemtum of the particle (p¥) in the frame of
the mirror on the left?

(e) The particle bounces off of the mirror. What is its four-momentum
now?

moyc
myv
0
0

pt =

(f) Now the particle is approaching the mirror on the right. What
is the zeroth component of the four-momentum of the particle
in the frame of the right-hand mirror? One could do a Lorentz
transformation but it is easier to use Ur” pu to determine the
energy of the particle in the primed frame.

ye

—yv
0
0

Ufpy = [ myc —myv 0 0 } = my? (024-02)

(g) Using the answer to 6, construct the four-momentum of the
particle in the frame of the right-hand mirror (p;l).



ASTROPHYSICAL PROCESSES

(h) The particle bounces off of the mirror. What is its four-momentum
now?

(i) Now the particle is approaching the mirror on the left. What is
the zeroth component of the four-momentum of the particle in
the frame of the left-hand mirror? Again one could do a Lorentz
transformation but it is easier to use Ul/} lp;, to determine the
energy of the particle in the unprimed frame.

Ye
[ mey?(1+ B2) 2By*me 0 0 } = mc2y3 (1+3‘32)

0

(j) Compare the energy of the particle in step (d) to the energy of
the particle in step (i). Has the energy of the particle increased?
Let’s let the relative velocity of the mirrors approach the speed

of light.
1

~1——

By what factor does the energy of the particle increase each
time it goes back and forth.

The energy has increased by a factor of
7 (1 + 3[32) ~ 472

(k) The final element is the fact that only a tiny fraction of the
particles bounce back and forth. Let’s take that fraction to be
107> and y = 100. What can you say about the final distribution
of particle energies?

The final distribution will be a power-law with slope given by

s =In107°/In(49?) ~ —1.1
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3. Boosting We are going to figure out how times and energies mea-
sured by someone in motion differ from what we might measure.

(a) Use special relativity (the Minkowski metric) to figure this
out. I measure a photon to have an energy E. What is the four-
momentum of the photon?

(b) My pal is travelling toward me in the opposite direction of the
photon at a velocity Sc. What is his four-velocity? Use the defi-
nition 7y = (1 — p?) A simplify the expression. What energy
would he measure for the photon? What does the expression
look like as v gets much larger than one?

(c) If my pal observes the photon to have an energy of 100 MeV
while I say its energy is less than 500 keV, what is the minimal
value of 7y for my pal (take B ~ 1 to make life easier)?

(d) My pal is still coming toward me at a velocity Sc. When he
is a distance r away from me (at a time f() he emits a photon
toward me. How long does it take this photon to reach me?

(e) From his point of view a short time At later he emits another
photon toward me. How long is At in my frame and when do
I receive the second photon? What is the difference in time
between when I receive the first and second photons? What
does the expression look like as 7 gets much larger than one?
Compare it with you answer to (b).

Answer:
(a)
E
C
pt = E Take p! = ¢ (1096)
c 0
0
(b)
v
L —lé’Yc and E' = —u,p" = vE + BYE ~29E (1097)

0

(¢) E =500keV and E’ = 100 Mev = 2(500 keV) $0 Ymin = 100.
(d) f Arrival = f0 + %
(e)

Atme = 'YAthim (1098)

1
tArrival,Z = tO + 7Athim + E (7’ - IBC'YAthim) (1099)



r
= o+ - + YAtpim (1 —B) (1100)
AtArrival = A‘L'himr)/ (1 - :8) (1101)
1 1
Ai'LArrival = Athim,)/(17+ﬁ) ~ Athimg' (1102)

where to get the penultimate result, one uses the identity (1 —
B)(1+ B) = 72 and in general we have

AtArrival _ E

Abi o (1103)
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Chapter 5

1. Bremsstrahlung:

Consider a sphere of ionized hydrogen plamsa that is undergoing
spherical gravitational collapse. The sphere is held at uniform
temperature, Tj, uniform density and constant mass My during
the collapse and has decreasing radius Rg. The sphere cools by
emission of bremsstrahlung radiation in its interior. At t = ty the
sphere is optically thin.

(a) What is the total luminosity of the sphere as a function of
My, R(t) and Tj while the sphere is optically thin?

(b) What is the luminosity of the sphere as a function of time after
it becomes optically thick in terms of My, R(t) and Tp?

(c) Give an implicit relation in terms of R(t) for the time t; when
the sphere becomes optically thick.

(d) Draw a curve of the luminosity as a function of time.

Answer:

s . 1/2 2

(@ L = ef4nRd = Zre (201 ( M ) ZpinR3, s0
Lo« R3.

(b) L = oggT*4nR?

4y, g2 — 2 (2mT\VE (M) 3
(©) osaTH4nR? = 3 () (3)” et
(d) Draw your graph with luminosity increasing with time as

R(t)~3 and then decreasing after a certain time as R(t).
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Chapter 6

1. Synchrotron Radiation:
An ultrarelativistic electron emits synchrotron radiation. Show that
its energy decreases with time according to
4p2

2¢*B]

3m3cd

y=70+ApH) ", A= (1104)

Here 7 is the initial value of v and B| = Bsina. Show that the
time for the electron to lose half its energy is

typ = (Ay) " (1105)

How do you reconcile the decrease of v with the result of constant
v for motion in a magnetic field?

Answer:
dE 20y 25 5 20
=g T M = grocﬁ Y By
SO .
dvy 2 e 5 5
2L _=Z B
dt 3 m3cd LY

where we have taken § ~ 1. If the Lorentz factor v = yp att = 0,
integrating this yields

1 1 2 ¢

= > ——B%t,
Y v 3mid

and rearranging yields the answers above.

2. Synchrotron Cooling More Precisely:

Derive the evolution of the energy of the electron (or ) evolves in
time without making the ultrarelativistic approximation.

Answer:
Let’s start with

dy_ 2

dt

1] dy dy
“Ad=3 {7—1 7+1]

and the answer upon integrating is

2
3005 BI B2y = —A(y* - 1)
e

SO

v = coth (co’chf1 Yo+ At) .
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Chapter 7
1. The Sunyaev-Zeldovich Effect

(a) Let’s say that you have a blackbody spectrum of temperature T
of photons passing through a region of hot plasma (T;). You can
assume that T < T, < mc?/k

What is the brightness temperature of the photons in the
Rayleigh-Jeans limits after passing through the plasma in terms
of the Compton y—parameter?
Answer:
2
T initial = mlu (1106)
In Compton scattering, I = I,/ (hv) is constant but v¢ = v;e¥ so

we have
2

c —1Y
T final = rzezykeylv = e YTy nitial (1107)

(b) Let’s suppose that the gas has a uniform density p and con-
sists of hydrogen with mass-fraction X and helium with mass-
fraction Y and other stuff Z. You can assume that Z/A = 1/2
is for the other stuff. What is the number density of electrons in
the gas?

Answer: One gram of the gas has X grams of hydrogen which
provide X/m electrons. It has Y grams of helium which pro-
vides (Z/A)Y/my, = 2/4Y /m, electrons and Z grams of other
stuff which provides 1/2Y/m, electrons. Adding it up gives

- LY AN _xy=_F_
ne—mp (X+2Y+2Z>—2mp(2X+1 X)_Zmp(1+x)
(1108)

(c) If you assume that the gas is spherical with radius R, what is
the value of the Compton y—parameter as a function of b, the
distance between the line of sight and the center of the cluster?
You can assume that the optical depth is much less than one.

Answer: The distance through the cluster is given by
[ =2vR%—p? (1109)
so the optical depth is

Tes = Ineor = 2/ R%2 — bzﬁ(l + X)or (1110)
r

o
4kT 4kT
YNR = —5Tes = — V Rz—bZL(1+X)UT (1111)
me me My



(d) Let’s assume that the sphere contains 10'?> M, of gas and that
the radius of the sphere is 10 Mpc, X = 0.7,Y = 0.27 and
Z = 0.03 what is the value of the y—parameter?

Answer: The density of the cluster gas is

10M; (2 x 10%g/M,, )
371(10Mpc(3.08 x 102*cm/Mpc) )3

o= =0.16 x 10 'g/cm’

(1112)
This is actually really low. A realistic cluster is more massive
that this. Let’s plug these values in the formula for yngr and
pick a reasonable value for kT = 10 keV so we get

YNR = 2 X 10_8M12R1_02T10 (1113)

We can estimate the temperature of the cluster gas using the
virial theorem

M 3 GM?
2—kT ~ =
mpk 5 R (1114)
SO
3 GMm, 1
kT ~ 10 R ~ 1.3eVMpRy, (1115)

(e) Let’s suppose that the blackbody photons are from the cosmic
microwave background. What is the difference in the brightness
temperature of the photons that pass through the cluster and
those that don’t (including the sign)? How does this difference
compare with the primordial fluctuations in the CMB? How can
you tell this change in the spectrum due to the cluster from the
primordial fluctuations?

Answer:

The photons that pass through the cluster have a brightness
temperature that is lower by 2yTcyms. The fluctuations of the
CMB are around 10> Ty, so for such a puny cluster the S-Z
would be hard to see. However, clusters are generally much
more massive so the S-Z dominates over the fluctuations. Fur-
thermore, the S-Z shifts photons to higher energies which is
different than CMB fluctuations which change the temperature,
so observations at energies in the Rayleigh-Jeans and Wein tail
of the CMB spectrum can distinguish between the S-Z effect and
primordial fluctuations.

2. Synchrotron Self-Compton Emission Blazars

(a) What is the synchrotron emission from a single electron pass-
ing through a magnetic field in terms of the energy density of
the magnetic field and the Lorentz factor of the electron?
Answer: 4

Pg = gfyzcﬁchTUB (1116)
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(b) The number density of the electrons is 1, and they fill a spher-
ical region of radius R. What is the energy density of photons
within the sphere, assuming that it is optically thin?

Answer: Pn, gives the power per unit volume. To get the en-
ergy per unit volume we have to multiply by the typical time
for photons to escape the spherical region typically R/c because
it is optically thin so we have

4 R
uphoton = g’)/Z(TTCﬁzLIBne? (1117)

(c) What is the inverse Compton emission from a single electron
passing through a gas of photons field in terms of the energy
density of the photons and the Lorentz factor of the electron?
Answer:

4
PIC = gVZCﬁZO—Tuphoton (1118)

(d) What is the total inverse Compton emission from the region
if you assume that the synchrotron emission provides the seed
photons for the inverse Compton emission?

Answer:

4 4 R
Pic = 572Cﬁ20'T <3720ﬁ2‘7TuBneC> neV (1119)

SO
64
Pic = 574,846(7%1.13;131{4 (1120)
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Chapter 8

1. Particles in a Box

A reasonable model for the neutrons and protons in a nucleus is
that they are confined to a small region. Let’s take a one-dimensional
model of this. The potential is V(x) is zero everywhere for 0 <
x < I and infinite otherwise. This means that
n? d2y

— 5 = Enpif 0 <x <l (1121)

and p = 0if x < 0 or x > [. What are the energy levels of this
system?

Answer: The harmonic functions the sine and cosine have the
property that the second derivative is proportional to the function
itself. We have ¢ =0 at x = 0 and at x = [ so

. [/ TInXx
Py = Nsin (T) (1122)
where n = 1,2,3,.... Let’s calculate,
W dxy K ome? . /mnx n o2,
“amae —am g N () gy )
SO )y
[
E, = %1—211 (1124)

2. Hyperfine Transition

Calculate the energy and wavelength of the hyperfine transition
of the hyodrgen atom. You may use the following formula for the
energy of two magnets near to each other

(1125)

We are looking for an order of magnitude estimate of the wave-
length. I got 151 cm which is in the ballpark.

Answer: First let’s write the values of the magnetic moments,

e h
H1=Hp = ngMCE (1126)
and
=y, = g E (1127)
yZ_ye_gechZ 7

The spins can be aligned or antialigned so the energy difference is
2u1pa /13 s0 we get

2
AR~ Sp8e @ 1
8 mc2 Mr3

(1128)
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Let's take r = ag = h?/ (me?) to get

_ 8p8e e mde® _ 8p8e ahic m3alh3c3 _ 8p8e ! m

AE —mc*=10"%eV
MTHC e

8 m2uim 8 mc®  B*M 8
(1129)
so A =123 cm.
A Better Answer:
First let’s write the values of the magnetic moments,
e
M1 = Hp = 8pap st (1130)
and .
H2 = He = geTmChSz (1131)
so we get
2 32
_ 8p8e e~ N .
E= 1 M3 S1-S» (1132)
Let's take r = ag = h*/ (me?) to get
2 3,6 3,3%3.3
p_ 8p8e ¢ m’e®  gp8e whc mahic® 8pgea4ﬂmcz(sl.52)'
4 mc? ytMm 4 mcz2 M 4 M
(1133)
Let’s calculate F = s + sy and square it
F-F = (s1+ sz)2 =83 +s5+2s -5 (1134)
F(F+1) = Si(S14+1)+5(S2+1)+2s1-52  (1135)
3 3
F(F+1) = 14—14—251-52 (1136)
5 1 3 31
S1-52=§F(F+1)—ZL:—Z,Z (1137)
so .
AEr_gr—1 = %zx‘l—mcz =2x10"%V (1138)
’ 4 M
and A = 60 cm.

3. Density and Ionization

Calculate the ionized fraction of pure hydrogen as a function of
the density for a fixed temperature. You may take U(T) = go = 2
and UM(T) = g5 =2.

Answer:

Let’s take the Saha equation,

N*N, _ (27mwmkT 3/22U+(T)6_E1/kT (1130)
N u(T) ‘ 39

Let ¢ be the ionized fraction,

Nt Nt
= (1140)

CTNANT T Na



so using the values of U(T) and U™ (T) given in the problem

N2, 5 2mmkT 3/2€7E[/kT (1141)
(1= &) Neot h? .
Rearranging
&2 2 (2mmkT\*? . .
et (T ) e e

SO

E= /2 +2y -y~ /2y « N/ (1143)
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Chapter 9

1. Lifetime

Derive the lifetime of the n = 2,1 = 1,m = 0 state of hydrogen to
emit a photon and end up in the n =1,/ = 0, m = 0 state.

Answer:

The Einstein A-coefficient gives the rate of spontaneous emission
for a state

2h3 327313
5B = 3
c 3hc

Ap = dif|* = (1144)

3,3 12
32y 272 Tif
3hc3 0 ap

Let’s calculate everything expect the matrix element to be sure of
the units. We know that

e? 1 3¢?
hv = 2mhy = 20 (1 — 22) = 810 (1145)
so we get
9¢8 rir > 9t 1if |2 1if |2
Ap=—— | L =22 — 13 x10% | L
128%*c3aq | 40 128 ag | ag ap

(1146)
where we used a = €2/ (fic), so the units are clearly right!
The last step is to calculate the matrix element. We will choose
the electron to initially be in the m = 0 state so the x and y com-
ponents of the dipole matrix element will be zero, so we are left
with

raif a / ’ /1 1 —-r 1 —r/2
— = — d dy— 7
0 g 0 r-ar . ‘u\/»€ (1’]/[) \/71’6 U (114 )

1 [ 1 2742
= 2ﬁa5/0 drr4e_3r/2/1dyy2 = % = 0.7481148)
3 -

(1149)

The lifetime is

8 8
1 (3) ﬂolz(g) "1 1s8ns (1150)

Ay \2) ca* mec? ad

2. Hydrogen-Like Absorption

How much energy does a photon need to ionize the following
atoms by removing a K-shell electron?

Hydrogen, Helium, Carbon, Oxygen, Iron

Using the formula that I derived in class, draw an energy diagram
that shows the total cross section for one gram of gas as a function
of energy between 10eV and 10keV. It would be great if you used
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the initial expression in Eq. (72) for the dipole matrix element
rather than the final answer given by Eq. (73).

Consider that the mass fraction of the different atoms are hydro-
gen (0.7), helium (0.27), carbon (0.008), oxygen (0.016) and iron

(0.004).

Answer:

Let’s first get the units right like in the previous quesiton. Using
equations (72) and (61) we get

5 -6
2pVmw 2567 [ Z z > > 9
f = "o v (a%) (0%4"7 > eq (1151)

Let’s relate p = fig to the energy of the photon, we have

ZZ 2
2“ mc? (1152)

PZ
E=hw=-"—+E =-1—
w I 2m+

Let’s define x = E/Ej to get

2561 (B )\’ 32,5 _ 32 3/2,.-5

(1153)
I know that or/m, = 0.4 cm?g~! so the total cross section per

gram of matertial is

or 32
Obf,Total = inmfpm
1

i

(xi = 1)%/2x° (1154)

where X; is the mass fraction of the species, A; is its atomic
weight, Z; is its atomic number and x; = E/(Z?13.6 V).
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Chapter 10

1. The Number of Levels
I fit a Morse function to the potential of H . The parameters were
e? e? 1
Euno= —0.065;, B, = 0.0761—,/3,1 =0.7a, " ,Ro =25a9  (1155)
0 0

How many vibrational levels does H] have? How many rotational
levels does each vibrational level typically have?

Answer:

Let’s first to the rotational levels. When we increase the value of
the angular momentum from L to L + 1 and the energy of the
molecule decreases, we have reached the maximum value of L.
From Eq. (14) we have

L+1)2
4?12% =1 (1156)
HABL
S0 1/2
kuspR4
Lmax - ( V4h2 0) -1 (1157)

We need to determine k. This is related to the parameters that I
gave in the question, we know that w? = k/u4p and in the Morse
potential w? = 2B2B, so

k = 2B By (1158)
and 2
2682B R4
Lmax - </3}1;‘_I:2ABO> -1 (1159)

I'm going to substitute the units for the various quantities into the
expression above

1/2 1/2
L (BeBucmpaoRE) T BuBamREN T
max 4h2 41713

where I used pap = m,/2 and e*ag = 1?/m,. The expression in
the parenthesis is dimensionless! I get

Lmax = 23.79. (1161)

Because L ranges from zero to Lmax, I have 24 or 25 levels.

A formula for the number of vibrational levels is given explicitly
in Eq. (19). The number of levels is

1/2 1/2 1/2
(2uaBa)2 1 BY? 2, 1 BY? (m, 1
AEPABTR) 4 - = = a?h == —£ -~ =167
+ mp aoﬂo + 2 ﬁn ", + B
(1162)

Bult 2" Ba
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2. Nuclear Overlap

Consider two deuterons bound by a single electron as in question
(1). What is the probability that the two deuterons lie on top of
each other, i.e. that R < 4 fermi, the diameter of the deuteron?
What is the probability if the two deuterons are bound by a single
muon, my =~ 207m,? You can find the eigenfunctions of the Morse
potential on Wikipedia.

If you assume that whenever the deuterons overlap they fuse
and that you get to “roll the dice” once each oscillation period,
calculate the fusion rate in both cases.

Answer:

The probability of overlap is simply the squared modulus of the
nuclear wavefunction evaluated at r = 0 integrated over the vol-
ume 4/37t(4 fermi)3. The nuclear wavefunction is given by

Y.(z) = anA*”*%e*Z/zL%)‘*znfl(z) (1163)
where A = /2MB,,/(Bnh) and the normalization

Bn(2A —2n—1) V2

N =t o T T 2A =)

(1164)

and L% is a Laguerre polynomial and z = 2Ae~(*"*) and x = B,7.
This wavefunction is in terms of r as a one-dimensional coordinate;
it is analogous to the function R(r) in the expansion of the atomic
wavefunction in spherical symmetry. The complete wavefunction
is

P(r,6,¢) = \/1#_1%(2)’ (1165)

so the probability of the two nuclei being within 4 fermi of each
other is given by

4 fermi 4 fermi
P= [T dr ¥ @hexp [BuRo)) = ¥ (24 exp [BuRo])
(1166)
Since we are interested in the ground state, n = 0 so
1/2
2A-2n-1 _ _ [Bu(2A 1)
Ls =1land N, = [ T2 (1167)

which simplifies matters. What remains is to calculate determine
how the value of A depends on the mass of the binding particle
muon or electron. We have

2
_ V2MAe/ay _ V@i@ (1168)

Bao
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where M is the reduced mass of the pair of deuterons and m is the
mass of the muon or electron. The constants A and B are simply
the numerical constants 0.07 and 0.7 that define the parameters of
the Morse potential in dimensionless units. For the electronically
bound system A = 22.9 and for the muonically bound system

A =1.59.

What remains is to evaluate the wavefunctions in both cases, for
the electron we have

¥(R=0)=75x10" (1169)
and for the muon we have
¥(R=0)=20x10"2. (1170)
Converting these to probabilities yields
Paectron = 5 X 107, Pyon = 6 x 1078, (1171)

To get a fusion rate we should multiply these by the typical fre-

quency of the systems say w = 2B2B,/M = 2AB%¢*/(a3mp/2)
or 1.2 x 10'® Hz for the electron and 3.6 x 10" Hz for the muon.
Therefore, we get a rate of three deuterium fusions over the age

of the universe in one ton of deuterium for electronically bound

molecules or 2 x 102 Hz for the muonically bound molecule or

about 4 million times over the 2.2us lifetime of the muon.

It turns out that the rate-limiting step in muonic fusion is the
formation of muonic molecules which takes about one thousand
times longer than the fusion, but even this is not the killer. It is

the fact that about one percent of the time the muon stays stuck to
the fusion product so cannot catalyse another reaction. The first
person to consider muon-catalysed fusion was John David Jackson,
and Eugene Wigner suggested that “alpha sticking” could be a
problem. This process was the original “cold fusion,” and it almost
breaks even (within a factor of a few).
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Chapter 11

1.

Maximum Flux

Calculate from the Euler equation and the continuity equation,
at what velocity does the flux (pV) reach its maximum for fluid
flowing through a tube of variable cross-sectional area? At which
velocities does the flux vanish? You can consider the flow to be
adiabatic.

Answer:

From Euler’s equation we have

(v-V)v= Y (1172)
SO
dv 1dP
U% = —Ea (1173)
and we have
dap 2
0= (1174)
Combining these two gives
d v
£ =P (1175)
S
We have (o0) 5
d(pv dp ( v )
=o+v—=p|1——= (1176)
dv PTo%p =P c2

This function reaches an extremum at v = c¢s. Because the flux
is zero for v = 0 and increases with v for v < c¢;, this must be a
maximum for jv.

If we assume that the sound speed is constant (isothermal gas),
this integrates to give

v2/(2c2)

PV = pove (1177)

where pg is the density at zero velocity. This has a maximum of
poce™1/2
arbitrarily high velocities. In a more realistic situation, the sound

at v = cs. We can let the gas expand and accelerate to
speed is a function of density

P\
c? = cglo (> , (1178)

and we have

dj 2 o\ v Y1y
g — P l1 "2, <) =51 %(Pov) ] (1179)
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with j = pv. This differential equation has the following solution

'()2 1/(7_1)
j(v) =pov |1+ (1 —7) 1 (1180)

2
2cslO

If we take v — 1 we get the solution above for the isothermal case.
The flux reaches a maximum of

27 1/(v=1) 1
imax = 0C —_— 1181
Jmax = P0Cs,0 (7+1> 2y 12 ( )
at a velocity of
v = %CS,O- (1182)

Unlike the isothermal case, the flux vanishesatv = O and v =
cs0v2/ (7 —1). How can we understand this second velocity
when the flux vanishes? Along a streamline of the gas we have

v? P+e P+ (y—1)"1pP Y 19
?+w—w0— i 0 —,Y_l’)’ 5o (1183)

The maximum velocity that the gas can attain is

v =/2mwg = \/22/ (v — 1) = c501/2/ (1~ 1) (1184)

. Stream Bed

Fig. 25 shows how the level of the surface changes for a flow pass-
ing over an obstacle. For an initial depth of zyp = 1 and g = 10 and
a bump height of y(x) = 0.1e=*", find the solutions to Bernoulli’s
equation (Eq. 857) for z as a function of x and the initial velocity
vg. You may find several solutions for a given x. Also you should
only worry about the positive real solutions for z. What are the
values of the critical velocities vy?

Answer:
The solution follows from Eq. 861 by plugging in the values of

y(x), zo = 1, g = 10 and vy which you are going to vary to look at
the different solutions. This yields

2 2

_ % p_ % _ —x? _
A=2,B= 2+10[1 0.1e },c_lo. (1185)

Next we use Eq. 863 to find the value of cos 3t. This equation will
yield several values of 3t because the cosine function is symmetric
and periodic. They are

2 2 4 4

(1186)
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Because we are interested in the value of cost, the first two re-
sults yield the same value. Let’s draw a picture with the various
possibilities numbered:

Because we are only interested in the x—coordinate (the cosine of
the angle), we see that solutions 1 and 2, 3 and 6 and 4 and 5 are
equivalent, so we only need to keep the solutions with t between
zero and 7t. In the left diagram we used f = 25° so we only have a
single value with cos t greater than zero. We can discard negative
values of cost because that would yield that the surface of the
water lies underneath the surface of the bottom.

For t; > 30° there are two positive solutions. The centre diagram
has t; = 35°. These solutions coincide for t; = 60° (right diagram).
Where this condition holds the flow is travelling at the critical
velocity. The value of vy that causes the flow to travel at the critical
velocity over the peak of the bump is the critical value of vy. In
general, we only have to be concerned with solutions (1) and (4),
the rest are repeats or negative.

3. Sound Velocity

Show that for a linear sound wave i.e. one in which dp < p that
the velocity v of fluid motion is much less than ¢s. Estimate the
maximum longitudinal fluid velocity in the case of a sound wave
in air at STP in the case of a disturbance which sets up pressure
fluctuations of order 0.1%.

Answer:

Starting with Eq. 848 we can relate the velocity of the fluid in the
wave to the pressure disturbance,

/

/ / /
V/:ﬂklv/:ﬂl_cﬂ—ﬂci (1187)
o w 00 Cs

==
Po P07y

where p’ = c2p’ because ¢2 = dp/dp. Furthermore, the adiabatic
exponent is given by v = dInp/dInp = (p/p)c?.
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Chapter 12

1. Shock Entropy Show that the entropy of the fluid increases as it
passes through a shock. Hint: the equation of state of an isentropic
fluid is P = Kp” where the value of K increases with increasing
entropy.

Answer:

The simplest way to solve this is to look at the shock adiabat and
see that the entropy increases along it, but let’s be a bit more rigor-
ous. The value of K is a function of entropy alone, so let’s look at
how K changes across the shock. Specifically what is P/p7 on each
side of the shock? We have

02 (yv+1)M? P,  1—7y+2M3y

2 _ L= = 1188
P12+ Mi(y-1)'P (r+1) (159)
SO _
K 1-v9+2My [ (v+0M; 177 (1150
K~ (D) 24 My - 1) ’

Let’s expand this ratio for M7 =~ 1 to understand the change in
entropy for a weak shock,

Ka 2y(r=1) (12 1) 2_1\*
— =14+ "= (M7 -1 O(M]—-1) .

K +3(%1)2( ! ) * ( L ) (1190)
The value of K increases across the shock for v > 1, therefore the
entropy increases. To make this precise we know that for an ideal
gas, s = cy InK + 59, so

AK _ 29(v—1)

A: =
STOK T 3112

(M% ~ 1)3 cv ++0 (M% - 1)4. (1191)

2. Bomb Yield

Fig. 32 shows shocked air heated to incandescence about two
milliseconds after the detonation of a nuclear bomb. The height of
the device was 9o meters. What was the approximate yield of the
device?

Answer:

Eq. 910.

3. Relativistic Shock

Find the incoming and outgoing velocity of a relativistic shock
in terms of the energy density and pressure on either side of the
shock.

Answer:
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Start with Eq. 934 and 935,

wiUyyr = wollyyo, wi Ui + p1 = wall + po. (1192)
Let’s use the second equation to solve for U3
w1 LI2 +p1—
g = it - pe (109
w»
and rewrite 'y% in terms of U
1 ‘BZ +1— ‘32
2 _ — _ 172
T2 = 1— ‘32 - 1— ’Bz - uZ +1. (1194)
The square of the first equation yields
wil? (U% + 1) = w3l3 (U% + 1) (1195)
2 2
2012 (172 2WiUf +p1—p2 [y +p1—p2
1) = it g
wiuf (U +1) = wb - < - ig6)
2
U2 = (1= p2)° — prwz — powy 1
! wy [wy — w1 +2(p1 = p2)] (1197)
(ﬁ)z _ (1= p2)(p1— pa + W) (1198)
¢ (p1—p2 —w1)(p1 — p2 + w2 — w1)
(g)z _ (p2—p1)(e2+p1) (1199)
¢ (62 —€1)(e1 + p2)

and we obtain v, by swapping the one and two indicies in the
previous equaiton, yielding

o1 [(p2—p1)(e2+p1)
c \/ (€2 —€1)(e1+ p2) (1200)
v (P2 —p1)(e1+p2)
c \/ (€2 —€1)(e2+p1) (1200

. Relativistic Bernoulli

Find the relativistic generalisation of Bernoulli’s equation for a
streamline (you can neglect gravitiy).

Answer:

For the Bernoulli equaion we must assume that all time derivatives
vanish and look at the properties of the fluid along a flow line. We
can use the shock jump conditions as a starting point, (e.g. Eq. 933
and 934), because they must hold along a streamline as well as
across a discontinuity. We have

Un = constant, wlvy = constant. (1202)
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Using the first equation to eliminate U from the second yields

w
77 = constant. (1203)
This doesn’t look much like the non-relativistic Bernoulli equation.
Let’s make some substitutions. We have

1 Uz 2 . . .
” (1 + 202) (pc + wNR,V) + Higher order in velocity = constant.

(1204)
Now let’s divide both sides by the rest mass of the particles

1 2
- (1 + U) (pc2 + wNR,V) + Higher order in velocity = constant

0 22
(1205)
and expand, dropping higher-order terms
2 0> | WNRV
-+ 5 + ~— = constant (1206)
and
2
5 + w = constant (1207)

where w is the enthalpy per unit mass. This is the non-relativistic
Bernoulli equation. For the classical result with an incompressible
fluid we have w = P/p.

. Bathtub Physics

When water flows into a bathtub, a circular hydraulic jump forms
around the incoming stream of water. If you assume that the flow
rate is constant and the flow is initially vertical, calculate the
height of the water downstream of the jump as a function of the
radius of the jump and the flow rate. You may neglect friction. If
the bathtub is large compared to the radius of the jump and the
walls are vertical, how does the radius of the jump change with
time?

Answer:

Here the flow rate and downstream height are given. We have

Q

= ﬁ (1208)

j
where Q is the volumetric flow rate and r is the radius of the

jump. What is the height of the upsteam flow /11 in terms of the
downstream height /1,? We have

1 1
vihy + Egh% =v3hy + Egh% (1209)
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S0
2 2
Foolge 7 L
hl + zghl - h2 + 2gh2 (1210)
and with rearranging
. 1
7 (i —ho) + 58 (h%hl - hi’hz) = 0. (1211)
We can factor this to give
5 (i = h2) (ghalt} + gh3n —2j2) =0 (1212)
so we have the positive solutions
hy 8j2
h1:h2,h1:? < 1+@— . (1213)

Now we use that v; is constant to eliminate hy = j/v; = Q/(27trvy).
Furthermore, iy = Qt/ A where A is the cross-sectional area of the
jump. Putting all of these into the equation above yields

Q 8/ Q\*/A\®
2ml—m(%+g(zm) (&) ‘1)' (214

and solving for the radius r yields

_A(QAv]-tQg) APyl A1
- 2mt2Qgvy Qgmt: 2moup b

(1215)
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Chapter 13

1. Exact Solutions

For which values of  can the Bernoulli equation (Eq. 955) be
solved using elementary methods (linear, quadratic and cubic
equations of the form in Eq. 862). There are many, however only a
few have 1 <y < 5/3.

Answer:

Let’s start with the Bernoulli equation,

vj_ﬁ_cﬁ—c?(oo) _GM _
2 v—1 r

0. (1216)

First let’s divide both sides by 2 to get
102 1-cj(e0)/c3 GM _ 10> 1-cj(e0)/ci 1c 4 ci(o0) 0

S S

2c2 y—1 2 2c2 r—1 r5—-3y (2
(1217)

We need to express the sound speed in terms of r and v. We have
P = Kp” (1218)

SO
2 1_ 2 e\
= T = LA

¢ = 7Kp s (00) ( p(oo)) (1219)

We can relate v, r and p through M = 47r?vp We are interested in
a plot of y = v/cs versus x = r/r, so let’s substitute for x and y to
get

2 2
y° o 11 4 c5(00)
2+'y—1 (’y—l x5-3y) ¢2 =0 (1220)
Now we need to find c2(c0)/c? in terms of x and y. We can deter-

mine p at any point through M = 471pv and the formula above.
The key is to write M = a M. First, we have

M = 4rtr*vp = dmar?es(re)p(re) (1221)

S0
P walr)  a (plr)\ TV a NV
pre) ¥y o Xy \ p - %y =

o o pre) [ a YO0 o2 \VOD
p(e0) — plre) p(eo) (xzy> (5_37> (1223)

using Eq. 959 and giving an expression for

[ a 20r-1)/(r+1) o
5—3y

x2y

(1224)

c3(e0)
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Let’s substitute this into the Bernoulli equation to yield
2/ (r41) v L1 2a20-D/(+1)
2 y-1 5—3y

a(r-1)/(y+1) (1 4 _
X (7—1+x(5—37)) 0 (1225)

There could be many possibilities: we could solve for x or y in
terms of the other, and the resulting equation could be a cubic,
quadratic or linear in the three terms. Let’s begin with solving for
X.

Solution for x:

On the second line there are two terms in x that differ by a single
power of x. We can make substitutions of the form x = u®?,

x = w*3 that will transform the equation into a quadratic or
cubic with the correct choice of -, or we could solve for x directly
which would require that 4(y — 1)/(y+1) = 2,1,0,—1,-2,
yielding quadratic, linear, linear, quadratic and cubic equations,
respectives. A value of 4(y —1)/(y —1) = 3 would also yield a
cubic equation but not of the simply solvable form (Eq. 862). There
are also simply solvable quartics, but this is beyond the scope of
the question.

2 (“7:11) 0% Type Substitution =~ Comment
2 3 quadratic x Non-Ideal
1 5/3 linear x Divergent
0 1 linear x Divergent
-1 3/5  quadratic x Unphysical
-2 1/3 cubic x Unphysical
1/2 9/7 quadratic x = u? Good
-1/2  7/9 cubic x=u"? Unphysical
2/3 7/5 cubic x =wd Good
1/3  13/11 cubic x=w3 Good

Solution for y:

We can also solve for y in terms of x. Here the two terms in y dif-
fer by two powers of y; this naturally leads to a quadratic without
substitution. Some of the various possibilities are listed in the
following table.

4. Bondi Solution

Generate a picture like the figure in the lecture notes for the Bondi
solution to spherical accretion. Use vy = 9/7.

Answer:
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2(1-79)

T 7 Type Substitution =~ Comment
2 0  quadratic w = y? Unphysical
1 1/3 cubic y Unphysical
0 1 linear w = y? Divergent
-2/3 2 cubic w3 =y? Non-Ideal
-1 3  quadratic y Non-Ideal
—4/3 5 cubic w3 = y2 Non-Ideal

The answer starts as the first question up to the Bernoulli equation
(Eq. 1225) where we substitute v = 9/7 to yield

2 2" 8 8 74

Let u = /x and multiply everything by u to give a quadratic
equation for u

7 7 7 49 o174
72 1/2_ 7 /4 7/a  Ou _0 (1226)

7
u—==20 (1227)

7 5 |7a%
“u? - 7
Tk l " +7) | u—73

§y1/4

. Bondi Solution — Harder

Generate a picture like the figure in the lecture notes for the Bondi
solution to spherical accretion. Use v = 7/5.

Answer:

The answer starts as the first question up to the Bernoulli equation
(Eq. 1225) where we substitute v = 7/5 to yield

5 2/3 _5.-1/3_5 17353 _ 2501
Ex — bx — 1“ — ZW =0. (1228)
Let w® = x and multiply everything by u to give a cubic equation
for w 3
5 Sa
§w3— ‘IW <y2—5)w—5:0. (1229)

of the form Eq. 862. This equation can be solved analytically
. Accretion Energetics

_ GM
(@) T==>%"
_ GM
(b) T ="
(¢) Tns/m = 2 x 10% erg/g, Twp/m = 8 x 10'® erg/g. The
accretion energy for a neutron star greatly exceeds the nuclear
energy. The opposite holds for a white dwarf.

(d) The total energy per gram is essentially the value given in part
¢). The Eddington luminosity is 1.8 x 1038 erg/s for a neutron
star (see problem 3.6). This yields an Eddington accretion rate
of approximately 10'® g/s.

237
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7. A simplified accretion disk

_ _ GMd
(a) dE = — GMdm
(b) didE _ GMdm dE _ GMdm
- b

272/ drdt T 22 dt
©) dan = g
@ o7 - 2t
(e) ‘fi—f = fr:]A %%dr = %%—T (ro_l - r;l), the peak temperature
is at rg and the minimum temperature is at r 4.

(f) To sketch the spectrum we will assume that the BB emission
emerges exclusively at the peak of the BB, so we need to trans-
late dE/ (drdt) to dE/(dTdt).

dj _ djﬂ _ GMdﬂ oT347r* _ 47r20T3
dT  drdT  2¢2 dt \ 3GMm ) 3

and substituting yields

4o

2/3
d£:4na GMrh /T1/3
aT 3

or F, « v1/3,

(g) If the accretion rate exceeds the Eddington rate, some matter

must be expelled.

(h) Viscosity
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Chapter 14

1.

X-ray Bursts:

We will try to model Type-I X-ray bursts using a simple model for
the instability. We will calculate how much material will accumu-
late on a neutron star before it bursts.

(a) Let us assume that the star accretes pure helium, that the
temperature of the degenerate layer is constant down to the core
(T¢), how much luminosity emerges from the surface of the star?

(b) Let us assume that the helium layer has a mass, dM, and that
the enregy generation rate for helium burning is given by

€30 = 3.5 % 1020T9—3 exp(—4.32/Tg)ergs_lg_1

where Ty = T/10°K. The energy generation rate is a function
of density too, but let’s forget about that to keep things simple.
How much power does the helium layer generate as a function
of dM?

(c) Equate your answer to (a) to the answer to (b) and solve for
dM. This is the thickness of a layer in thermal equilibrium.

(d) Let’s assume that the potential burst starts by the temperature
in the accreted layer jiggling up by a wee bit. If the surface
luminosity increases faster with temperature than the helium
burning rate, then the layer is stable. Calculate dLqyyface/dT and
dPhelium/dT'

(e) Calculate the value of dM for which dPygjjum/dT exceeds
dLgurface/dT and the layer bursts.

(f) Equate your value of dM in (c) and (e) and solve for T. What is
dM? How long will it take for such a layer to accumulate if the
star is accreting at one-tenth of the Eddington accretion rate?

Answer:

(a) If you assume free-free opacity you get using results from
Chapter 1

1K
or if you used the black-body formula you get

7/2
L, ff = 2.35 x 10%rg/s (T>

8 T\
Ly gp =7 x 10°%erg/s (1K>

(d)
Pe = €3,dM = 3.5 x 1020T9’3 exp(—4.32/To)ergs g~ ldM

239
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©)
dMgp = 2.12 x 10°T3> > exp(4.32/ To)g

and
dMpp = 2 x 10T] exp(4.32/To)g
@ 5/2
dL T
v.ff 8 L
F 8.2 x 10%erg/s/K <1K)
and )
dLypp 9 T
T 2.8 x 10%erg/s/K <1K) .

For the helium burning we get

dPHe
aT

=42 X 1010erg/s/g/KT9_5 exp(4.32/Ty)(36 — 25Ty )d M.

(e) Let’s solve for dM again where the various derivatives are
equal

dMr = 6.19 x 10T,/ % exp(4.32/ To) (36 — 25To) g
and
dMpr = 6.67 x 10°T§ exp(4.32/To) (36 — 25Ty) ~'g.

(f) We find that Tg = 0.664 for the free-free opacity and To = 0.617
for the BB-case (no insulation). The layer thicknesses are

dMgr =107 g

and
dMBB =7X 1025 &/

yielding accretion times of 2.8 hours and 24 years, respectively.
The insulation of the envelope makes a big difference. Type-I
bursts typically recur on a timescale of hours at one-tenth of the
Eddington accretion rate.
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Rayleigh-Taylor instability, 183

Saha equation, 116
Schrodiner equation, 107
Sedov solution, 161
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shearing instability, 186
shocks, 157
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hydraulic jump, 168
isothermal, 166
Jouguet point, 164
non-relativistic, 157
radiative, 165
relativistic, 167
shock abiabat, 159
Slater determinant, 111
sound waves, 148
special relativity, 59
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Doppler effect, 61
field tensor, 66
four-vectors, 61
length contraction, 60
Lorentz transformations, 59
radiative transfer, 67
tensors, 64
spherical accretion, 171
spin-orbit coupling, 112
Stefan-Boltzmann Law, 7
Sunyaev-Zeldovich effect, 104
supersonic flow, 149
synchrotron radiation, 85
motion, 85
non-thermal particles, 87
polarization, 88
spectrum, 86, 88

temperature
brightness, 10, 24
colour, 10
effective, 10

tensors, 64

thermal instability, 188

Wien'’s displacement law, 9

Zeeman effect, 113
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