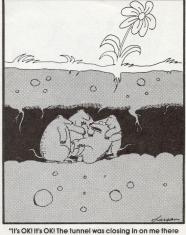


Lecture outline

- Soil fauna
- Abundance of soil organisms
- Soil food web
- Introduction to biochemical transformations


3

Vertebrates (mice, moles, ground squirrels, etc.) mix soil through their burrowing activity

Annelids (segmented worms) most important representatives are earthworms

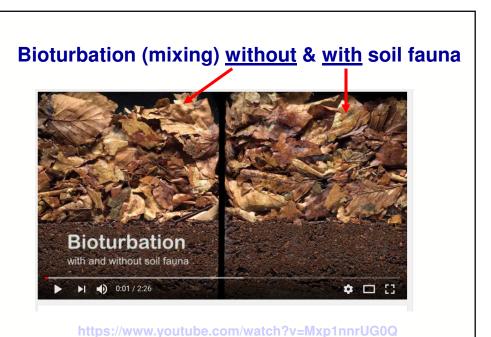
https://www.youtube.com/watch?v=n3wsUYg3XV0

Arthropods (spiders, mites, springtails, insects) shred plant residues, mix it with soil, and stimulate decomposition within their intestines. Some are predators

Springtail (collembola)

Millipede

Arachnids mite

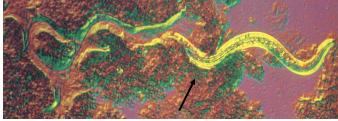

7

Functions:

- Predators of other animals and grazers of bacteria/fungi/algae >
 helps in nutrient cycling
- work as pioneer species by inhabiting new developing environments

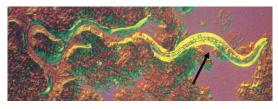
https://ed.ted.com/lessons/meet-the-tardigrade-the-toughest-animal-on-earth-thomas-boothby

Protozoa - "primitive animals"


- •feed on fungi & bacteria (release excess NH₄⁺ near root system), or fragments of organic matter
- •help suppress disease by competing with or feeding on pathogens
- •are food source for other soil organisms

Ciliate

Nematodes (threadworms) - after consuming bacteria, nematodes excrete much of the excess N as inorganic N (ammonia), hence increasing mineralization



Mouth parts of a bacterial-feeding nematode

Nematodes (threadworms):

- bacterial-feeders after consuming bacteria, nematodes excrete much of the excess N as inorganic N (ammonia) → increases nutrient cycling
- predators (used for biocontrol of insect pests)
- plant parasites (root feeders)

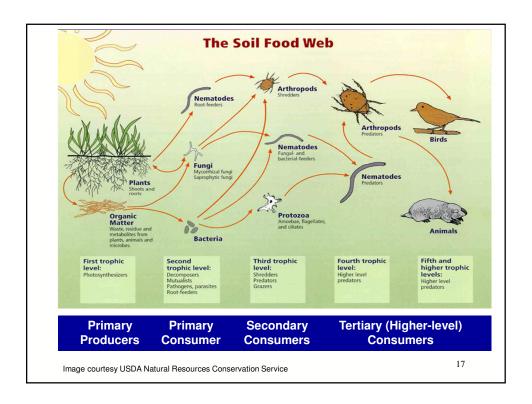
Mouth parts of a plant parasitic nematode

Mouth parts of a bacterial-feeding nematode

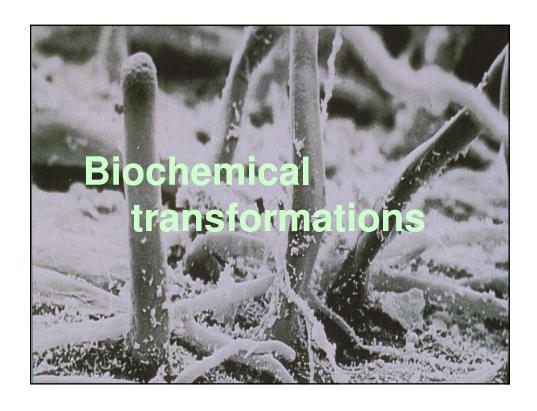
Numbers and biomass of soil organisms in the <u>surface</u> soils

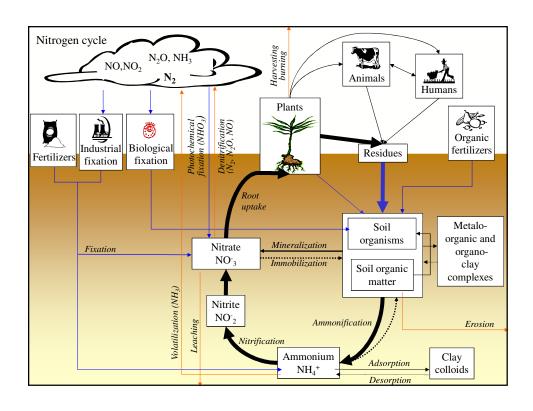
Organism	Estimated number per g	Estimated biomass of species (kg/ha)
Bacteria	$10^8 - 10^9$	400-5000
Actinomycetes	$10^7 - 10^8$	400-5000
Fungi	$10^5 - 10^6$	1,000-15,000
Algae	$10^4 - 10^5$	10-500
Protozoa	$10^4 - 10^5$	20-200
Nematodes	$10 - 10^2$	10-150
Mites	1-10	5-150
Collembola	1-10	5-150
Earthworms	$10 - 10^3 \mathrm{per}\mathrm{m}^2$	3,000 (in BC)

Estimated number of species in BC


- Vascular plants 2,500 species
- Birds 450 species
- Mammals 100 species
- Reptiles 20 species
- Amphibians 20 species

Most species in the groups listed above have been identified


• **Arthropods** 35,000 species (~50% are not yet identified)


15

What are the reasons for greater biological diversity in soils relative to aboveground ecosystems?

The sources of soil N are:

- Biological fixation of N₂
- Deposition of N (NO₃⁻ and NH₄⁺) compounds from the atmosphere by precipitation
- Fertilizers
- Plant residues
 Manure
 Addition of organic matter
- Processes that are mediated by soil organisms

The losses of soil N occur through:

- · Plant removal
- Leaching
- Gaseous losses (denitrification and NH₃ volatilization)
- Erosion (wind and water)
- Ammonium fixation (clay complexes)
- Processes that are mediated by soil organisms

21