ASSIGNMENT 3

DUE: OCTOBER 13, 2011

- 1 (10 points) For a subgroup H of G define the left coset aH of H in G as the set of all elements of the form ah, $h \in H$. The right coset Ha is the set of all elements of the form $ha h \in H$. Show that there is a one-to-one correspondence between the set of left cosets of H in G and the set of right cosets of H in G.
- 2 (10 points) Suppose that H is a subgroup of G such that whenever $Ha \neq Hb$ then $aH \neq bH$. Prove that $gHg^{-1} \subset H$ for all $g \in G$.
- 3 (10 points) Let G be a finite group whose order is not divisible by 3. Suppose that $(ab)^3 = a^3b^3$. Prove that G must be abelian.
- 4 (10 points) If N is normal in G and $a \in G$ is of order o(a), prove that the order of aN in G/N is a divisor of o(a).
- 5 (10 points) Let G be the group of nonzero complex numbers under multiplication and let \overline{G} be the group of all real (2×2) matrices of the form $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, where not both a and b are 0, under matrix multiplication. Show that G and \overline{G} are isomorphic. (Hint: Represent a complex number as (a + ib) where a, b are real).