ASSIGNMENT 3

DUE: OCTOBER 13, 2011

1 (10 points) For a subgroup H of G define the left coset $a H$ of H in G as the set of all elements of the form $a h, h \in H$. The right coset $H a$ is the set of all elements of the form $h a h \in H$. Show that there is a one-to-one correspondence between the set of left cosets of H in G and the set of right cosets of H in G.

2 (10 points) Suppose that H is a subgroup of G such that whenever $H a \neq H b$ then $a H \neq b H$. Prove that $g \mathrm{Hg}^{-1} \subset H$ for all $g \in G$.

3 (10 points) Let G be a finite group whose order is not divisible by 3 . Suupose that $(a b)^{3}=a^{3} b^{3}$. Prove that G must be abelian.

4 (10 points) If N is normal in G and $a \in G$ is of order $o(a)$, prove that the order of $a N$ in G / N is a divisor of $o(a)$.

5 (10 points) Let G be the group of nonzero complex numbers under multiplication and let \bar{G} be the group of all real (2×2) matrices of the form $\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$, where not both a and b are 0 , under matrix multiplication. Show that G and \bar{G} are isomorphic. (Hint: Represent a complex number as $(a+i b)$ where a, b are real).

