ASSIGNMENT 2

DUE: OCTOBER 4, 2011

- 1 (10 points) Prove that if G is abelian group, then for all $a, b \in G$ we have $(a \cdot b)^n = a^n \cdot b^n$.
- 2 (10 points) Show that if every element in a group G is its own inverse, then G is abelian.
- 3 (10 points) If $a \in G$, then define $N(a) = \{x \in G \mid xax^{-1} = a\}$. Show that N(a) is a subgroup of G. (It is called the normaliser or centraliser subgroup in G of a).
- 4 (10 points) The center of a group G is the set of all elements $z \in G$ such that zg = gz for all $g \in G$. Show that the center is an abelian subgroup of G.
- 5 (10 points) If H is a subgroup of G, then the normaliser of H denoted N(H) is the set of all elements g in G such that $gHg^{-1} = H$. The centraliser of H denoted C(H) is the set of all elements g in G such that gh = hg for all elements h in H.
 - (a) Show that N(H) and C(H) are subgroups of G.
 - (b) What, if any, is the containment relation between these two subgroups?