1 Solutions to assignment 3, due May 31

Problem 11.26 Use the Euclidean Algorithm to find the GCD for each of the following pairs of integers:

Solution: (a) 51 and 288

In this case, we write $288 = 5 \cdot 51 + 33$. Following through, we obtain

```
51 = 1 \cdot 33 + 18

33 = 1 \cdot 18 + 15

18 = 1 \cdot 15 + 3

15 = 5 \cdot 3
```

and therefore gcd(288, 51) = 3.

(b) 357 and 629

In this case, we have again

 $\begin{array}{l} 629 = 1 \cdot 357 + 272 \\ 357 = 1 \cdot 272 + 85 \\ 272 = 3 \cdot 85 + 17 \\ 85 = 5 \cdot 17 \end{array}$

and so gcd(629, 357) = 17.

(c) 180 and 252 Lastly, we have

 $252 = 1 \cdot 180 + 72$ $180 = 2 \cdot 72 + 36$ $72 = 2 \cdot 36$

which yields that gcd(252, 180) = 36.

Problem 11.27 Determine integers x, y such that

Solution: (a) gcd(51, 288) = 51x + 288y. We work backwards:

$$\begin{aligned} 3 &= 18 - 1 \cdot 15 \\ &= 18 - 1 \cdot (33 - 1 \cdot 18) = 2 \cdot 18 - 1 \cdot 33 \\ &= 2 \cdot (51 - 1 \cdot 33) - 1 \cdot 33 = 2 \cdot 51 - 3 \cdot 33 \\ &= 2 \cdot 51 - 3 \cdot (288 - 5 \cdot 51) = 17 \cdot 51 - 3 \cdot 288 \end{aligned}$$

(b) gcd(357, 629) = 357x + 629y. In this case, we have again

$$17 = 272 - 3 \cdot 85$$

= 272 - 3 \cdot (357 - 1 \cdot 272) = 4 \cdot 272 - 3 \cdot 357
= 4 \cdot (629 - 1 \cdot 357) - 3 \cdot 357 = 4 \cdot 629 - 7 \cdot 357

- (c) gcd(180, 252) = 180x + 252y. Lastly, we have
 - $36 = 180 2 \cdot 72$ = 180 - 2 \cdot (252 - 1 \cdot 180) = 3 \cdot 180 - 2 \cdot 252
- Problem 11.28 Let a and b be integers, not both 0. Show that there are infinitely many pairs s, t of integers such that gcd(a, b) = as + bt.

Solution: We first show, as per the hint, that there are infinitely many integers m, n such that ma + nb = 0. We note of course that if n = -a and m = b, that ma + nb = ba - ab = 0. Thus we see that, for any $k \in \mathbb{Z}$, the integers m = kb and n = -ka have the desire property; there are infinitely many of these.

If we then add the two equations

 $1 = as + bt \qquad \qquad 0 = (kb)a + (-ka)b$

together, we find that

$$1 = (s+kb)a + (t-ka)b$$

is true for any $k \in \mathbb{Z}$ as desired.

Problem 11.34 Use Corollary 11.14 to prove that $\sqrt{3}$ is irrational.

Solution: Corollary 11.14 states that if p is prime, and $p \mid ab$, then $p \mid a$ or $p \mid b$.

So assume that $\sqrt{3}$ is rational, i.e. $\sqrt{3} = \frac{p}{q}$ for relatively prime integers p, q. In particular, at most one of them is divisible by 3.

This is equivalent to $3q^2 = p^2$. This of course implies that $3 \mid p^2$. Using the corollary, we see that either $3 \mid p$ or $3 \mid p$... i.e. we conclude that $3 \mid p$. We then conclude that, as q, p have no common factors, that $3 \nmid q$.

Writing p = 3k for some integer k we find that we have $3q^2 = (3k)^2 = 9k^2$. Cancelling a factor of 3 we obtain $q^2 = 3k^2$. However, we can now conclude that $3 \mid q^2$ and thus, using the corollary again, that $3 \mid q$. But this contradicts that p, q have no common factors. Problem 11.36 Let p be a prime, and let $n \in \mathbb{Z}$ with $n \geq 2$. Prove that $p^{1/n}$ is irrational.

Solution: There are two likely proofs of this. The first is as follows.

Suppose that $p^{1/n} = a/b$ for integers a, b with no common factors. Then this is equivalent to $b^n p = a^n$.

Using the same corollary as before, we see that $p \mid a^n$, and thus we can conclude that $p \mid a$. But this means that we can write a = pk for some integer k, and so

$$b^n p = (pk)^n = p^n k^n$$

or, upon simplifying, $b^n = p \cdot p^{n-2} k^n$.

Hoewver, this implies that $p \mid b^n$ which implies yet again that $p \mid b!$ As we assumed that a, b had no common factors, we have found our desired contradiction.

Q.E.D.

The other proof involves looking at the prime factorizations of a and b; all exponents on the right-hand side are multiples of n, but at least one on the left hand side (that of p) has remainder 1 when dividing by n, which is a contradiction.

Problem 11.37 Prove that if $p \ge 2$ is an integer with the property that for every pair a, b of integers, $p \mid ab$ implies that $p \mid a$ or $p \mid b$, then p is prime.

Solution: We look at the contrapositive form of this statement. That is, we prove instead that

If p is composite, then there exist integers a, b such that $p \mid ab$, but $p \nmid a$ and $p \nmid b$.

We need to exhibit an example of such integers a, b, given composite p.

If p is composite, then p = xy for some integers $x, y \ge 2$. So choose x = a and y = b. Then as p = ab, we clearly have that $p \mid ab$. However, as a, b < p, we cannot have that $p \mid a$ or $p \mid b!$

Thus we have proven the contrapositive, and we are done.

Q.E.D.

Problem 11.38a Prove that every two consecutive odd positive integers are relatively prime.

Solution: Let 2n - 1 and 2n + 1 be our two consecutive odd positive integers, and let $d \mid 2n - 1, d \mid 2n + 1$.

As $d \mid a$ and $d \mid b$ implies that $d \mid (a \pm b)$, we have in this case that

 $d \mid (2n+1) - (2n-1) = 2$

Thus d = 1 or d = 2. If d = 2, then $2 \mid (2n + 1)$. But this is clearly false, and so the only possibility is that d = 1. Thus the only divisor of 2n - 1 and 2n + 1 is 1, and so they are relatively prime as claimed.

Q.E.D.