
1 Solutions to assignment 3, due May 31

Problem 11.26 Use the Euclidean Algorithm to �nd the GCD for each of the following
pairs of integers:

Solution: (a) 51 and 288

In this case, we write 288 = 5 ·51+33. Following through, we obtain

51 = 1 · 33 + 18
33 = 1 · 18 + 15
18 = 1 · 15 + 3
15 = 5 · 3

and therefore gcd(288, 51) = 3.

(b) 357 and 629

In this case, we have again

629 = 1 · 357 + 272
357 = 1 · 272 + 85
272 = 3 · 85 + 17
85 = 5 · 17

and so gcd(629, 357) = 17.

(c) 180 and 252

Lastly, we have

252 = 1 · 180 + 72
180 = 2 · 72 + 36
72 = 2 · 36

which yields that gcd(252, 180) = 36.

Problem 11.27 Determine integers x, y such that

Solution: (a) gcd(51, 288) = 51x + 288y.

We work backwards:

3 = 18− 1 · 15
= 18− 1 · (33− 1 · 18) = 2 · 18− 1 · 33
= 2 · (51− 1 · 33)− 1 · 33 = 2 · 51− 3 · 33
= 2 · 51− 3 · (288− 5 · 51) = 17 · 51− 3 · 288
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(b) gcd(357, 629) = 357x + 629y.

In this case, we have again

17 = 272− 3 · 85
= 272− 3 · (357− 1 · 272) = 4 · 272− 3 · 357
= 4 · (629− 1 · 357)− 3 · 357 = 4 · 629− 7 · 357

(c) gcd(180, 252) = 180x + 252y.

Lastly, we have

36 = 180− 2 · 72
= 180− 2 · (252− 1 · 180)
= 3 · 180− 2 · 252

Problem 11.28 Let a and b be integers, not both 0. Show that there are in�nitely many
pairs s, t of integers such that gcd(a, b) = as + bt.

Solution: We �rst show, as per the hint, that there are in�nitely many
integers m,n such that ma + nb = 0. We note of course that if n = −a
and m = b, that ma + nb = ba− ab = 0. Thus we see that, for any k ∈ Z,
the integers m = kb and n = −ka have the desire property; there are
in�nitely many of these.

If we then add the two equations

1 = as + bt 0 = (kb)a + (−ka)b

together, we �nd that

1 = (s + kb)a + (t− ka)b

is true for any k ∈ Z as desired.

Problem 11.34 Use Corollary 11.14 to prove that
√

3 is irrational.

Solution: Corollary 11.14 states that if p is prime, and p | ab, then p | a
or p | b.
So assume that

√
3 is rational, i.e.

√
3 = p

q for relatively prime integers
p, q. In particular, at most one of them is divisible by 3.

This is equivalent to 3q2 = p2. This of course implies that 3 | p2. Using
the corollary, we see that either 3 | p or 3 | p... i.e. we conclude that 3 | p.
We then conclude that, as q, p have no common factors, that 3 - q.

Writing p = 3k for some integer k we �nd that we have 3q2 = (3k)2 = 9k2.
Cancelling a factor of 3 we obtain q2 = 3k2. However, we can now conclude
that 3 | q2 and thus, using the corollary again, that 3 | q. But this
contradicts that p, q have no common factors.
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Q.E.D.

Problem 11.36 Let p be a prime, and let n ∈ Z with n ≥ 2. Prove that p1/n is irrational.

Solution: There are two likely proofs of this. The �rst is as follows.

Suppose that p1/n = a/b for integers a, b with no common factors. Then
this is equivalent to bnp = an.

Using the same corollary as before, we see that p | an, and thus we can
conclude that p | a. But this means that we can write a = pk for some
integer k, and so

bnp = (pk)n = pnkn

or, upon simplifying, bn = p · pn−2kn.

Hoewver, this implies that p | bn which implies yet again that p | b! As
we assumed that a, b had no common factors, we have found our desired
contradiction.

Q.E.D.

The other proof involves looking at the prime factorizations of a and b; all
exponents on the right-hand side are multiples of n, but at least one on
the left hand side (that of p) has remainder 1 when dividing by n, which
is a contradiction.

Problem 11.37 Prove that if p ≥ 2 is an integer witht he property that for every pair a, b
of integers, p | ab implies that p | a or p | b, then p is prime.

Solution: We look at the contrapositive form of this statement. That is,
we prove instead that

If p is composite, then there exist integers a, b such that p | ab, but p - a
and p - b.

We need to exhibit an example of such integers a, b, given composite p.

If p is composite, then p = xy for some integers x, y ≥ 2. So choose x = a
and y = b. Then as p = ab, we clearly have that p | ab. However, as
a, b < p, we cannot have that p | a or p | b!
Thus we have proven the contrapositive, and we are done.

Q.E.D.

Problem 11.38a Prove that every two consecutive odd positive integers are relatively prime.
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Solution: Let 2n − 1 and 2n + 1 be our two consecutive odd positive
integers, and let d | 2n− 1, d | 2n + 1.

As d | a and d | b implies that d | (a± b), we have in this case that

d | (2n + 1)− (2n− 1) = 2

Thus d = 1 or d = 2. If d = 2, then 2 | (2n + 1). But this is clearly false,
and so the only possibility is that d = 1. Thus the only divisor of 2n− 1
and 2n + 1 is 1, and so they are relatively prime as claimed.

Q.E.D.
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