1 Solutions to assignment 3, due May 31

Problem 11.26 Use the Euclidean Algorithm to find the GCD for each of the following pairs of integers:

Solution: (a) 51 and 288
In this case, we write $288=5 \cdot 51+33$. Following through, we obtain

$$
\begin{aligned}
51 & =1 \cdot 33+18 \\
33 & =1 \cdot 18+15 \\
18 & =1 \cdot 15+3 \\
15 & =5 \cdot 3
\end{aligned}
$$

and therefore $\operatorname{gcd}(288,51)=3$.
(b) 357 and 629

In this case, we have again

$$
\begin{aligned}
629 & =1 \cdot 357+272 \\
357 & =1 \cdot 272+85 \\
272 & =3 \cdot 85+17 \\
85 & =5 \cdot 17
\end{aligned}
$$

and so $\operatorname{gcd}(629,357)=17$.
(c) 180 and 252

Lastly, we have

$$
\begin{aligned}
252 & =1 \cdot 180+72 \\
180 & =2 \cdot 72+36 \\
72 & =2 \cdot 36
\end{aligned}
$$

which yields that $\operatorname{gcd}(252,180)=36$.

Problem 11.27 Determine integers x, y such that

Solution: (a) $\operatorname{gcd}(51,288)=51 x+288 y$.
We work backwards:

$$
\begin{aligned}
3 & =18-1 \cdot 15 \\
& =18-1 \cdot(33-1 \cdot 18)=2 \cdot 18-1 \cdot 33 \\
& =2 \cdot(51-1 \cdot 33)-1 \cdot 33=2 \cdot 51-3 \cdot 33 \\
& =2 \cdot 51-3 \cdot(288-5 \cdot 51)=17 \cdot 51-3 \cdot 288
\end{aligned}
$$

(b) $\operatorname{gcd}(357,629)=357 x+629 y$. In this case, we have again

$$
\begin{aligned}
17 & =272-3 \cdot 85 \\
& =272-3 \cdot(357-1 \cdot 272)=4 \cdot 272-3 \cdot 357 \\
& =4 \cdot(629-1 \cdot 357)-3 \cdot 357=4 \cdot 629-7 \cdot 357
\end{aligned}
$$

(c) $\operatorname{gcd}(180,252)=180 x+252 y$.

Lastly, we have

$$
\begin{aligned}
36 & =180-2 \cdot 72 \\
& =180-2 \cdot(252-1 \cdot 180) \\
& =3 \cdot 180-2 \cdot 252
\end{aligned}
$$

Problem 11.28 Let a and b be integers, not both 0 . Show that there are infinitely many pairs s, t of integers such that $\operatorname{gcd}(a, b)=a s+b t$.

Solution: We first show, as per the hint, that there are infinitely many integers m, n such that $m a+n b=0$. We note of course that if $n=-a$ and $m=b$, that $m a+n b=b a-a b=0$. Thus we see that, for any $k \in \mathbb{Z}$, the integers $m=k b$ and $n=-k a$ have the desire property; there are infinitely many of these.
If we then add the two equations

$$
1=a s+b t \quad 0=(k b) a+(-k a) b
$$

together, we find that

$$
1=(s+k b) a+(t-k a) b
$$

is true for any $k \in \mathbb{Z}$ as desired.
Problem 11.34 Use Corollary 11.14 to prove that $\sqrt{3}$ is irrational.
Solution: Corollary 11.14 states that if p is prime, and $p \mid a b$, then $p \mid a$ or $p \mid b$.
So assume that $\sqrt{3}$ is rational, i.e. $\sqrt{3}=\frac{p}{q}$ for relatively prime integers p, q. In particular, at most one of them is divisible by 3 .
This is equivalent to $3 q^{2}=p^{2}$. This of course implies that $3 \mid p^{2}$. Using the corollary, we see that either $3 \mid p$ or $3 \mid p \ldots$ i.e. we conclude that $3 \mid p$. We then conclude that, as q, p have no common factors, that $3 \nmid q$.
Writing $p=3 k$ for some integer k we find that we have $3 q^{2}=(3 k)^{2}=9 k^{2}$. Cancelling a factor of 3 we obtain $q^{2}=3 k^{2}$. However, we can now conclude that $3 \mid q^{2}$ and thus, using the corollary again, that $3 \mid q$. But this contradicts that p, q have no common factors.

Problem 11.36 Let p be a prime, and let $n \in \mathbb{Z}$ with $n \geq 2$. Prove that $p^{1 / n}$ is irrational.
Solution: There are two likely proofs of this. The first is as follows.
Suppose that $p^{1 / n}=a / b$ for integers a, b with no common factors. Then this is equivalent to $b^{n} p=a^{n}$.
Using the same corollary as before, we see that $p \mid a^{n}$, and thus we can conclude that $p \mid a$. But this means that we can write $a=p k$ for some integer k, and so

$$
b^{n} p=(p k)^{n}=p^{n} k^{n}
$$

or, upon simplifying, $b^{n}=p \cdot p^{n-2} k^{n}$.
Hoewver, this implies that $p \mid b^{n}$ which implies yet again that $p \mid b!$ As we assumed that a, b had no common factors, we have found our desired contradiction.
Q.E.D.

The other proof involves looking at the prime factorizations of a and b; all exponents on the right-hand side are multiples of n, but at least one on the left hand side (that of p) has remainder 1 when dividing by n, which is a contradiction.

Problem 11.37 Prove that if $p \geq 2$ is an integer witht he property that for every pair a, b of integers, $p \mid a b$ implies that $p \mid a$ or $p \mid b$, then p is prime.

Solution: We look at the contrapositive form of this statement. That is, we prove instead that

If p is composite, then there exist integers a, b such that $p \mid a b$, but $p \nmid a$ and $p \nmid b$.

We need to exhibit an example of such integers a, b, given composite p.
If p is composite, then $p=x y$ for some integers $x, y \geq 2$. So choose $x=a$ and $y=b$. Then as $p=a b$, we clearly have that $p \mid a b$. However, as $a, b<p$, we cannot have that $p \mid a$ or $p \mid b$!
Thus we have proven the contrapositive, and we are done.
Q.E.D.

Problem 11.38a Prove that every two consecutive odd positive integers are relatively prime.

Solution: Let $2 n-1$ and $2 n+1$ be our two consecutive odd positive integers, and let $d|2 n-1, d| 2 n+1$.
As $d \mid a$ and $d \mid b$ implies that $d \mid(a \pm b)$, we have in this case that

$$
d \mid(2 n+1)-(2 n-1)=2
$$

Thus $d=1$ or $d=2$. If $d=2$, then $2 \mid(2 n+1)$. But this is clearly false, and so the only possibility is that $d=1$. Thus the only divisor of $2 n-1$ and $2 n+1$ is 1 , and so they are relatively prime as claimed.
Q.E.D.

