
1 Solutions to assignment 6, due June 23rd

Problem 12.1 Let ε > 0. Let N = d 1
2ε
e. Then for all n > N , we have that n > 1

2ε
, and so ε > 1

2n
.

Thus: ∣∣∣ 1

2n
− 0

∣∣∣ =
1

2n
< ε

for all n > N , and so the sequence an = 1
2n

coverges to 0.

Problem 12.2 Let ε > 0. We would like to de�ne N =
⌈√

1
ε
− 1

⌉
, but if ε > 1 then this would be

a problem, since the term inside the square root is then negative. However, for every
n ∈ N, we have that 1

n2+1
< 1. Thus we de�ne instead

N =

{⌈√
1
ε
− 1

⌉
ε < 1

1 ε ≥ 1

So if n > N , then it follows that 1
n2+1

< ε. So we compute that∣∣∣ 1

n2 + 1
− 0

∣∣∣ =
1

n2 + 1
< ε

for every n > N , and so the limit is zero as claimed.

Problem 12.3 Let ε > 0. Similar to the previous problem, we let N = max
{
dlog2(

1
ε
)e, 1

}
. So for

n > N , it follows that n > 1 and n > log2(
1
ε
). Thus∣∣∣(1 +

1

2n

)
− 1

∣∣∣ =
1

2n
< ε

for all n > N , and so the limit is 1 as claimed.

Problem 12.4 Let ε > 0, and let N = max
{
d 1

4ε
− 3

2
e, 1

}
. As before, if n > N then n > 1 and

n > 1
4ε
− 3

2
. But we can compute easily that this is the same as ε > 1

4n+6
. Thus∣∣∣ n + 2

2n + 3
− 1

2

∣∣∣ =
1

4n + 6
< ε

as desired.

Problem 12.6 Let r ∈ R≥0 be arbitrary. The goal is to show that there is N ∈ N so that for all
n > N , we have that n4 > r. So choose N = d 4

√
r e. Then it is clear that whenever

n > N , we have that n4 > r as desired, and so n4 diverges to ∞.

Problem 12.7 Let r ∈ R≥0 be arbitrary, and let N = d 3
√

r e. Then for any n > N , it follows that

n3 > r. Since n5+2n
n2 = n3 + 2

n
> n3, we �nd that for all n > N that

n5 + 2n

n2
= n3 +

2

n
> n3 > r

and so the sequence diverges to in�nity.
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Problem 12.8 We compute the �rst few partial sums to be

s1 =
1

4

s2 =
1

4
+

1

4 · 7
=

2

7

s3 =
1

4
+

1

4 · 7
+

1

7 · 10
=

3

10

s4 =
1

4
+

1

4 · 7
+

1

7 · 10
+

1

10 · 13
=

4

13

and so it appears that sn = n
3n+1

. We will prove this by induction, the base case(s)
being given above.

So suppose that for some integer n that sn = n
3n+1

, and consider sn+1. We have that

sn+1 = sn +
1

(3n + 1)(3n + 4)

=
n

3n + 1
+

1

(3n + 1)(3n + 4)

=
n(3n + 4) + 1

(3n + 1)(3n + 4)

=
(3n + 1)(n + 1)

(3n + 1)(3n + 4)
=

n + 1

3(n + 1) + 1

as claimed. We now claim that limn→∞ sn = 1
3
i.e. that

∑∞
k=1

1
(3k−2)(3k+1)

= 1
3
.

Let ε > 0. Let N = d 1
9ε
− 1

3
e. Then for all n > N we have that n > 1

9ε
− 1

3
. But this is

equivalent to 1
9n+3

< ε. So we then have that∣∣∣sn −
1

3

∣∣∣ =
∣∣∣ n

3n + 1
− 1

3

∣∣∣ =
1

9n + 3
< ε

as claimed, and so the claim follows.

Problem 12.9 As we have seen before, this is a geometric series and so we already know that the
partial sums sn are given by

sn =
1− 1

2n+1

1− 1
2

= 2− 1

2n

So we will prove that the limit of this, as n → ∞, is 2. This however is exactly the
same proof (essentially) as problem 12.3, and so we are done.

Problem 12.10 We compute the �rst few terms of our sequence to be a1 = 1
2·3 , a2 = 1

3·4 , and a3 = 1
4·5 ,

and so we begin by conjecturing that an = 1
(n+1)(n+2)

for all n, which is an easy induction
proof, which will not be included here.
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We now compute the �rst few partial sums to be

s1 =
1

6

s2 =
1

4
=

2

8

s3 =
3

10

and so a plausible conjecture is that sn = n
2n+4

. As before, the base case is above, so
we move onto the induction step.

Suppose that sn = n
2n+4

and note that

sn+1 = sn+
1

(n + 2)(n + 3)
=

n

2(n + 2)
+

1

(n + 2)(n + 3)
=

n(n + 3) + 2

2(n + 2)(n + 3)
=

n + 1

2(n + 3)

as claimed.

We now claim that limn→∞ sn = 1
2
. So let ε > 0 and let N = max

{
d1

ε
− 2e, 1

}
. So it

follows that for all n > N , we have that n > 1
ε
− 2 or equivalently, that 1

n+2
< ε. Thus∣∣∣ n

2n + 4
− 1

2

∣∣∣ =
1

n + 2
< ε

as claimed, and so the sum
∑∞

n=1 an = 1
2
.
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