1 Solutions to assignment 6, due June 23rd

Problem 12.1 Let $\epsilon>0$. Let $N=\left\lceil\frac{1}{2 \epsilon}\right\rceil$. Then for all $n>N$, we have that $n>\frac{1}{2 \epsilon}$, and so $\epsilon>\frac{1}{2 n}$. Thus:

$$
\left|\frac{1}{2 n}-0\right|=\frac{1}{2 n}<\epsilon
$$

for all $n>N$, and so the sequence $a_{n}=\frac{1}{2 n}$ coverges to 0 .
Problem 12.2 Let $\epsilon>0$. We would like to define $N=\left\lceil\sqrt{\frac{1}{\epsilon}-1}\right\rceil$, but if $\epsilon>1$ then this would be a problem, since the term inside the square root is then negative. However, for every $n \in \mathbb{N}$, we have that $\frac{1}{n^{2}+1}<1$. Thus we define instead

$$
N= \begin{cases}\left\lceil\sqrt{\frac{1}{\epsilon}-1}\right\rceil & \epsilon<1 \\ 1 & \epsilon \geq 1\end{cases}
$$

So if $n>N$, then it follows that $\frac{1}{n^{2}+1}<\epsilon$. So we compute that

$$
\left|\frac{1}{n^{2}+1}-0\right|=\frac{1}{n^{2}+1}<\epsilon
$$

for every $n>N$, and so the limit is zero as claimed.
Problem 12.3 Let $\epsilon>0$. Similar to the previous problem, we let $N=\max \left\{\left\lceil\log _{2}\left(\frac{1}{\epsilon}\right)\right\rceil, 1\right\}$. So for $n>N$, it follows that $n>1$ and $n>\log _{2}\left(\frac{1}{\epsilon}\right)$. Thus

$$
\left|\left(1+\frac{1}{2^{n}}\right)-1\right|=\frac{1}{2^{n}}<\epsilon
$$

for all $n>N$, and so the limit is 1 as claimed.
Problem 12.4 Let $\epsilon>0$, and let $N=\max \left\{\left\lceil\frac{1}{4 \epsilon}-\frac{3}{2}\right\rceil, 1\right\}$. As before, if $n>N$ then $n>1$ and $n>\frac{1}{4 \epsilon}-\frac{3}{2}$. But we can compute easily that this is the same as $\epsilon>\frac{1}{4 n+6}$. Thus

$$
\left|\frac{n+2}{2 n+3}-\frac{1}{2}\right|=\frac{1}{4 n+6}<\epsilon
$$

as desired.
Problem 12.6 Let $r \in \mathbb{R}_{\geq 0}$ be arbitrary. The goal is to show that there is $N \in \mathbb{N}$ so that for all $n>N$, we have that $n^{4}>r$. So choose $N=\lceil\sqrt[4]{r}\rceil$. Then it is clear that whenever $n>N$, we have that $n^{4}>r$ as desired, and so n^{4} diverges to ∞.

Problem 12.7 Let $r \in \mathbb{R}_{\geq 0}$ be arbitrary, and let $N=\lceil\sqrt[3]{r}\rceil$. Then for any $n>N$, it follows that $n^{3}>r$. Since $\frac{n^{5}+2 n}{n^{2}}=n^{3}+\frac{2}{n}>n^{3}$, we find that for all $n>N$ that

$$
\frac{n^{5}+2 n}{n^{2}}=n^{3}+\frac{2}{n}>n^{3}>r
$$

and so the sequence diverges to infinity.

Problem 12.8 We compute the first few partial sums to be

$$
\begin{gathered}
s_{1}=\frac{1}{4} \\
s_{2}=\frac{1}{4}+\frac{1}{4 \cdot 7}=\frac{2}{7} \\
s_{3}=\frac{1}{4}+\frac{1}{4 \cdot 7}+\frac{1}{7 \cdot 10}=\frac{3}{10} \\
s_{4}=\frac{1}{4}+\frac{1}{4 \cdot 7}+\frac{1}{7 \cdot 10}+\frac{1}{10 \cdot 13}=\frac{4}{13}
\end{gathered}
$$

and so it appears that $s_{n}=\frac{n}{3 n+1}$. We will prove this by induction, the base case(s) being given above.

So suppose that for some integer n that $s_{n}=\frac{n}{3 n+1}$, and consider s_{n+1}. We have that

$$
\begin{aligned}
s_{n+1} & =s_{n}+\frac{1}{(3 n+1)(3 n+4)} \\
& =\frac{n}{3 n+1}+\frac{1}{(3 n+1)(3 n+4)} \\
& =\frac{n(3 n+4)+1}{(3 n+1)(3 n+4)} \\
& =\frac{(3 n+1)(n+1)}{(3 n+1)(3 n+4)}=\frac{n+1}{3(n+1)+1}
\end{aligned}
$$

as claimed. We now claim that $\lim _{n \rightarrow \infty} s_{n}=\frac{1}{3}$ i.e. that $\sum_{k=1}^{\infty} \frac{1}{(3 k-2)(3 k+1)}=\frac{1}{3}$.
Let $\epsilon>0$. Let $N=\left\lceil\frac{1}{9 \epsilon}-\frac{1}{3}\right\rceil$. Then for all $n>N$ we have that $n>\frac{1}{9 \epsilon}-\frac{1}{3}$. But this is equivalent to $\frac{1}{9 n+3}<\epsilon$. So we then have that

$$
\left|s_{n}-\frac{1}{3}\right|=\left|\frac{n}{3 n+1}-\frac{1}{3}\right|=\frac{1}{9 n+3}<\epsilon
$$

as claimed, and so the claim follows.
Problem 12.9 As we have seen before, this is a geometric series and so we already know that the partial sums s_{n} are given by

$$
s_{n}=\frac{1-\frac{1}{2^{n+1}}}{1-\frac{1}{2}}=2-\frac{1}{2^{n}}
$$

So we will prove that the limit of this, as $n \rightarrow \infty$, is 2 . This however is exactly the same proof (essentially) as problem 12.3, and so we are done.

Problem 12.10 We compute the first few terms of our sequence to be $a_{1}=\frac{1}{2 \cdot 3}, a_{2}=\frac{1}{3 \cdot 4}$, and $a_{3}=\frac{1}{4 \cdot 5}$, and so we begin by conjecturing that $a_{n}=\frac{1}{(n+1)(n+2)}$ for all n, which is an easy induction proof, which will not be included here.

We now compute the first few partial sums to be

$$
\begin{gathered}
s_{1}=\frac{1}{6} \\
s_{2}=\frac{1}{4}=\frac{2}{8} \\
s_{3}=\frac{3}{10}
\end{gathered}
$$

and so a plausible conjecture is that $s_{n}=\frac{n}{2 n+4}$. As before, the base case is above, so we move onto the induction step.
Suppose that $s_{n}=\frac{n}{2 n+4}$ and note that
$s_{n+1}=s_{n}+\frac{1}{(n+2)(n+3)}=\frac{n}{2(n+2)}+\frac{1}{(n+2)(n+3)}=\frac{n(n+3)+2}{2(n+2)(n+3)}=\frac{n+1}{2(n+3)}$
as claimed.
We now claim that $\lim _{n \rightarrow \infty} s_{n}=\frac{1}{2}$. So let $\epsilon>0$ and let $N=\max \left\{\left\lceil\frac{1}{\epsilon}-2\right\rceil, 1\right\}$. So it follows that for all $n>N$, we have that $n>\frac{1}{\epsilon}-2$ or equivalently, that $\frac{1}{n+2}<\epsilon$. Thus

$$
\left|\frac{n}{2 n+4}-\frac{1}{2}\right|=\frac{1}{n+2}<\epsilon
$$

as claimed, and so the sum $\sum_{n=1}^{\infty} a_{n}=\frac{1}{2}$.

