MATH 312: ASSIGNMENT 1

 DUE DATE: SEPTEMBER 21, 2012(1) Prove the following stronger version of Dirichlet's approximation result. If α is a real number and n is a positive integer, then there are integers a and b such that $1 \leq a \leq n$ and $|a \alpha-b| \leq \frac{1}{n+1}$.
(2) Show that an infinite subset of a countable set is countable.
(3) Use mathematical induction to prove that

$$
1^{2}+2^{2}+\cdots+n^{2}=\sum_{i=1}^{n} i^{2}=\frac{1}{6} n(n+1)(2 n+1) .
$$

(4) Show that if a is an integer, then $3 \mid a^{3}-a$.
(5) Use mathematical induction to show that $n^{5}-n$ is divisible by 5 for every positive integer $4 n$.
(6) If a and b are integers not both zero, show that the greatest common divisor (gcd) (a, b) exists and

$$
(a, b)=m_{0} a+n_{0} b
$$

for some integers m_{0} and n_{0}.
(7) Find the smallest prime between n^{2} and $(n+1)^{2}$ for all positive integers n with $n \leq 10$.
(8) Use Dirichlet's theorem to show that there are infinitely many primes whose decimal expansion ends with a 1.

