
< Summary of Set Theory and Induction > 
Discussed in class: 

• Informally, a set is a collection of objects (at a conceptual level) that share some common 
property. 

• We can define a set by either list out the members of the set explicitly (this is fine if the 
set is finite and small) or write out the conditions which the members of a set must all 
satisfy (this is better if the set is large but its members have some common properties). 

• Not all objects can desirably be a set, as illustrated by Russell’s Paradox. 
Definition Let 𝐴 and 𝐵 be two sets. 

𝐴 is a subset of 𝐵 (denoted by 𝐴 ⊆ 𝐵) if every element of 𝐴 is also an element of 
𝐵. 
𝐴 is a proper subset of 𝐵 (denoted by 𝐴 ⊂ 𝐵) if 𝐴 ⊆ 𝐵 and there exists at least one 
element in 𝐵 that is not in 𝐴. 
𝐴 and 𝐵 are equivalent (denoted by 𝐴 = 𝐵) if both 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴. 

Definition An empty set ∅ is a set which contains no member.I

Definition 

 

The cardinality of a set 𝐴, denoted by |𝐴|, is the number of elements in 𝐴. 

Definition The power set of a set 𝐴, denoted as 𝑃(𝐴), is the set of all subsets of 𝐴. 

Theorem If 𝐴 is a finite set, then |𝑃(𝐴)| = 2|𝐴|. 

Theorem 𝐴 ⊆ 𝐵 iff 𝑃(𝐴) ⊆ 𝑃(𝐵). 

Definition Let 𝐴 and 𝐵 be two subsets of some set 𝑈. 
The union of 𝐴 and 𝐵 is the set 

𝐴 ∪ 𝐵 = {𝑥 ∈ 𝑈|𝑥 ∈ 𝐴 𝑜𝑟 𝑥 ∈ 𝐵} 
The intersection of 𝐴 and 𝐵 is the set 

𝐴 ∩ 𝐵 = {𝑥 ∈ 𝑈|𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∈ 𝐵} 
The setwise differenceII

Definition 

 of 𝐴 subtract 𝐵 is the set  
𝐴 − 𝐵 = {𝑎 ∈ 𝐴|𝑎 ∉ 𝐵} 

Let 𝑈 be a set and let 𝐴 be a subset of 𝑈. The complement of 𝐴, denoted by 𝐴𝑐, is 
the set 

𝐴𝑐 = {𝑥 ∈ 𝑈| 𝑥 ∉ 𝐴} 

Corollary 𝐴𝑐 = 𝑈 − 𝐴 

Theorem (De Morgan’s Law) 
For sets 𝐴,𝐵 ⊆ 𝑈, 

(𝐴 ∪ 𝐵)𝑐 = 𝐴𝑐 ∩ 𝐵𝑐    and    (𝐴 ∩ 𝐵)𝑐 = 𝐴𝑐 ∪ 𝐵𝑐 

                                                   
I The empty set is a subset of every set and is unique. These two facts can be proven quickly by exploiting the 
conditional statement of first-order logic. 
II *𝐴 − 𝐵 is sometimes denoted by 𝐴\𝐵. 



Definition The Cartesian Product of two sets 𝐴 and 𝐵 is the set of ordered pairsIII

Definition 

 
𝐴 × 𝐵 = {(𝑎,𝑏)|𝑎 ∈ 𝐴 𝑎𝑛𝑑 𝑏 ∈ 𝐵} 

A relation between 𝐴 and 𝐵 is a subset of 𝐴 × 𝐵. 

Definition A function from a set 𝐴 to a set 𝐵, denoted as 𝑓:𝐴 ⟶ 𝐵, is a subset of 𝐴 × 𝐵 
which satisfies the following two properties: 

1. For all 𝑎 ∈ 𝐴, there exists some 𝑏 ∈ 𝐵 such that (𝑎,𝑏) ∈ 𝑓. 
2. For all 𝑎 ∈ 𝐴, if (𝑎,𝑏) ∈ 𝑓 and (𝑎, 𝑐) ∈ 𝑓, then 𝑏 = 𝑐.IV

Definition 

  

Let 𝐴 and 𝐵 be two sets such that 𝐴 ⊆ 𝐵. 
The characteristic function of 𝐴 in 𝐵 is the function 𝜒𝐴:𝐵 ⟶ {0,1} of the form 

𝜒𝐴(𝑏) = �0 𝑖𝑓 𝑏 ∈ 𝐴
1 𝑖𝑓 𝑏 ∉ 𝐴

� 

Definition A function 𝑓:𝐴 ⟶ 𝐵 is injective (or one-to-one) if, for all 𝑎1,𝑎2 ∈ 𝐴, 𝑓(𝑎1) =
𝑓(𝑎2) implies 𝑎1 = 𝑎2. 

Definition A function 𝑓:𝐴 ⟶ 𝐵 is surjective (or onto) if, for all 𝑏 ∈ 𝐵, there exists some 
𝑎 ∈ 𝐴 such that 𝑓(𝑎) = 𝑏.V

Definition 

  

A function 𝑓:𝐴 ⟶ 𝐵 is bijective if it is both injective and surjective. 

Theorem If 𝑓:𝐴 ⟶ 𝐵 and 𝑔:𝐵 ⟶ 𝐶 are injective, then 𝑔 ∘ 𝑓:𝐴 ⟶ 𝐶 is injective. (A 
similar result holds for surjectivity and bijectivity.) 

Definition Let 𝑓:𝐴 ⟶ 𝐵, then the inverse function of 𝑓, denoted as 𝑓−1:𝐵 ⟶ 𝐴, is a 
function such that 𝑓−1�𝑓(𝑎)� = 𝑎 for all 𝑎 ∈ 𝐴 and 𝑓�𝑓−1(𝑏)� = 𝑏 for all 𝑏 ∈ 𝐵. 

Theorem Let 𝑔:𝐴 ⟶ 𝐵. 𝑔 is bijective if and only if 𝑔−1 exists. 

Definition Two sets 𝐴 and 𝐵 are equinumerous, denoted by |𝐴| = |𝐵|, if there exists some 
bijection 𝑓:𝐴 ⟶ 𝐵. 

Theorem Suppose that 𝐴 and 𝐵 are finite sets with |𝐴| = 𝑚 and |𝐵| = 𝑛. If there is a 
bijection 𝑓:𝐴 ⟶ 𝐵, then 𝑚 = 𝑛. 

Theorem For any sets 𝐴, 𝐵 and C, 
1. |𝐴| = |𝐴| 
2. |𝐴| = |𝐵| if and only if |𝐵| = |𝐴| 
3. If |𝐴| = |𝐵| and |𝐵| = |𝐶|, then |𝐴| = |𝐶|.VI

                                                   
III An ordered pair (𝑎, 𝑏) is defined as the set (𝑎, 𝑏) = �{𝑎}, {𝑎,𝑏}�. This definition gives the properties that coincide 
with what we mean intuitively by an ordered pair, namely that (𝑎,𝑏) = (𝑐, 𝑑) iff 𝑎 = 𝑏 and 𝑐 = 𝑑 (ie. the idea of 
coordinate correspondence and that the order of arrangement matters). 

 

IV The set 𝐴 is the domain of 𝑓; the set 𝐵 is the codomain of 𝑓; the range of 𝑓 is the subset 𝑟𝑛𝑔(𝑓) ⊆ 𝐵 such that, 
for all 𝑏 ∈ 𝑟𝑛𝑔(𝑓), there exists some 𝑎 ∈ 𝐴 such that (𝑎, 𝑏) ∈ 𝑓. 
V This means that the range of the function must be equal to its codomain. 
VI These show that being equinumerous is an equivalence relation. 



Theorem For two sets 𝐴 and 𝐵, 
1. |𝐴| ≤ |𝐵| iff there is an injection 𝑓:𝐴 ⟶ 𝐵. 
2. |𝐵| ≤ |𝐴| iff there is a surjection 𝑔:𝐴 ⟶ 𝐵. 

Definition A set 𝑆 is denumerable (or infinitely countable) if |𝑆| = |ℕ|. 𝑆 is countable if it is 
finite or denumerable, otherwise 𝑆 is said to be uncountable.VII

Lemma 

 

If 𝑆 is a set whose members can be listed as 
𝑆 = {𝑠1,𝑠2,𝑠3, … } 

where 𝑠𝑖 ≠ 𝑠𝑗 for all 𝑖, 𝑗 ∈ ℕ, then |𝑆| = |ℕ|. 

Theorem The set of all real numbers is uncountable. 

Definition The Pascal’s Triangle is an arrangement of natural numbers which has the two 
following properties: 
Let 𝑏𝑖,𝑗 be the entry at the 𝑖-th row and 𝑗-th column, then, for all 𝑖, 𝑗 ∈ ℕ0, 

1. 𝑏𝑖,0 = 𝑏𝑖,𝑖 = 1 
2. 𝑏𝑖,𝑗 = 𝑏𝑖−1,𝑗 + 𝑏𝑖−1,𝑗−1 

Definition �𝑖𝑗� is the number of ways of choosing 𝑗 objects from a collection of 𝑖 objects. 

Theorem For all 𝑖, 𝑗 ∈ ℕ0, 

�𝑖𝑗� = �𝑖−1𝑗 �+ �𝑖−1𝑗−1�. 

Theorem For all 𝑖, 𝑗 ∈ ℕ0, 

��
𝑖
𝑗
�

𝑖

𝑗=0

= 2𝑖 

Definition A set 𝑆 is well-ordered if every subset 𝑆′ ⊆ 𝑆 has a least element. 

Axiom ℕ is well-ordered. 

Theorem (The Principle of Mathematical Induction, General Form) 
Let 𝑃(𝑛) be a statement whose truth value depends on 𝑛 ∈ ℕ. 
If, for some 𝑚 ∈ ℕ 

1. 𝑃(𝑚) is true 
2. For an arbitrary 𝑛 ∈ ℕ such that 𝑛 ≥ 𝑚, 𝑃(𝑛) is true implies 𝑃(𝑛 + 1) is 

true 
then 𝑃(𝑛) is true for all 𝑛 ∈ ℕ such that 𝑛 ≥ 𝑚. 

Theorem (The Strong Principle of Mathematical Induction, General Form) 

                                                   
VII We denote the cardinality of a denumerable set by ℵ0 (aleph-naught). 



Let 𝑃(𝑛) be a statement whose truth value depends on 𝑛 ∈ ℕ. 
If, for some 𝑚 ∈ ℕ 

1. 𝑃(𝑚) is true 
2. For an arbitrary 𝑛 ∈ ℕ, 𝑃(𝑘) is true for all 𝑚 ≤ 𝑘 ≤ 𝑛 implies 𝑃(𝑛 + 1) is 

true 
then 𝑃(𝑛) is true for all 𝑛 ∈ ℕ such that 𝑛 ≥ 𝑚. 

Definition The Fibonacci Numbers are a sequence of integers defined recursively as follows: 
𝐹1 = 1 
𝐹2 = 1 
𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2      for 𝑛 ≥ 3 

Theorem For all 𝑛 ∈ ℕ, 𝐹𝑛 and 𝐹𝑛+1 are relatively prime. 
 

 
Discussed in the textbook: 
p. 25 A collection 𝑆 of nonempty subsets of some set 𝐴 s a partition of 𝐴 such that 

1. For all 𝑋,𝑌 ∈ 𝑆, either 𝑋 = 𝑌 or 𝑋 ∩ 𝑌 = ∅.     (“mutual exclusiveness”) 
2. ⋃ 𝑋𝑋∈𝑆 = 𝐴     (“exhaustiveness”)VIII

p. 144 
 

(Proof by Minimum Counterexample) 
To show that 𝑃(𝑛) is true for all 𝑛 ∈ ℕ, we can also use proof by 
contradiction as follows: 

1. Assume that there exists some 𝑛 ∈ ℕ such that 𝑃(𝑛) is false. 
2. By the Well-Ordered Principle, there exists some smallest integer 𝑚 such 

that 𝑃(𝑚) is false. (𝑚 is the minimum counterexample) 
3. Since 𝑚 is the minimum counterexample, 𝑃(𝑘) is true for all 1 ≤ 𝑘 < 𝑚. 
4. Derive a contradiction. (This is usually achieved by contradicting the idea 

that 𝑃(𝑚) is false.) 
p. 212 A bijective function 𝑓:𝐴 ⟶ 𝐴 is also called a permutation. 
Theorem 10.3 Every infinite subset of a denumerable set is denumerable. 
Result 10.5 If 𝐴 and 𝐵 are denumerable, then 𝐴 × 𝐵 is denumerable. 
p. 237 Let 𝑓:𝐴 ⟶ 𝐵 and let 𝐷 be a nonempty subset of 𝐴. The restriction 𝑓1 of 𝑓 to 

𝐷 is the function 
𝑓1 = {(𝑎,𝑏) ∈ 𝑓| 𝑎 ∈ 𝐷} 

Theorem 10.17 Let 𝐴 and 𝐵 be nonempty sets such that 𝐵 ⊆ 𝐴. If there exists an injective 
function from 𝐴 to 𝐵, then there exists a bjective function from 𝐴 to 𝐵. 

Theorem 10.18 (The Schröder-Bernstein Theorem) 
If 𝑨 and 𝑩 are sets such that |𝑨| ≤ |𝑩| and |𝑩| ≤ |𝑨|, then |𝑨| = |𝑩|. 

                                                   
VIII One can generate an equivalence class from a partition, and similarly generate a partition from an equivalence 
class. 



Axiom (p.240) (The Axiom of Choice) 
For every collection of pairwise disjoint nonempty sets, there exists at least 
one set that contains exactly one element of each of these nonempty sets. 

Theorem 10.19 The sets 𝑃(ℕ) and ℝ are equinumerous. 
 

 
Important Topics: 

• Know how to prove set relations 
• Know how to prove properties of functions as well as constructing injections, subjections 

or bijections between two sets 
• Know how to work with cardinalities of sets 
• Cantor’s Diagonalization argument 
• Prove the Fundamental Theorem of Arithmetic by using strong induction 
• Being able to spot patterns and form a conjecture for your inductive proof 
• Perform induction on summation identities, divisibility, inequalities and set identities 
• Performing strong induction on recursively-defined sequences 
• Know how to prove the Schröder-Bernstein Theorem 

 
 

Some well-known summation identities: 
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