600D: ASSIGNMENT 1 DUE: OCT 26, 2011

i) Let R be a ring and P a finitely generated R-module. Show that there is a well-defined homomorphsim $Aut(P) \to K_1(R)$. Use this to show that there is a natural product operation $K_0(R) \otimes K_1(S) \to K_1(R \otimes S)$. ii) Show that a ring R and $M_n(R)$ are Morita equivalent and conclude that $K_i(R) \simeq K_i(M_n(R))$ for i = 0, 1. (Two rings R and S are said to be Morita equivalent if the categories R-mod and S-mod are equivalent). iii) Let (r,s) be a unimodular row over a commutative ring R. Define the $Mennicke\ symbol\ symbol\ symbol\ symbol\ symbol\ is independent of the matrix <math>\begin{pmatrix} r & s \\ t & u \end{pmatrix}$ where $t, u \in R$ satisfy ru-st=1. Show that this symbol is independent of the choice of t and u, and that we have

$$\begin{bmatrix} r \\ s \end{bmatrix} = \begin{bmatrix} s \\ r \end{bmatrix}, \ \begin{bmatrix} s \\ r \end{bmatrix} \begin{bmatrix} s' \\ r \end{bmatrix} = \begin{bmatrix} ss' \\ r \end{bmatrix}.$$

iv) Consider the function $\rho_n: R^{n-1} \to St_n(R)$ sending (r_1, \dots, r_{n-1}) to the product homomorphism $x_{in}(r_1)x_{2n}(r_2)\cdots x_{n-1,n}(r_{n-1})$. Show using the Steinberg relations that this is a group homomorphism. Show that ρ is an injection by showing that the composition $\phi \rho: R^{n-1} \to St_n(R) \to GL_n(R)$ is an injection.