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1c)
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2a) d
dx ( x
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( x2+x3 /2 )=2x+3
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2b)
y=x2 cos( x)

y '=2xcos(x )+x2 sin( x)
y ' '=2xsin( x)+2cos(x)−x2 cos( x)+2xsin (x )

y ' '=4x sin( x)+(2−x2)cos ( x)

2c)
y=x sin(√ x+ x)

y '=sin(√x+ x)+x cos(√x+x)( 1
2
x−0.5+1)

2d)
e     

[NOTE: this is what I would expect a student to guess if they didn't know what to put... so even if 
its correct, it may not show understanding, and hence is problematic...]



3a)

To find horizontal asymptotes I need to figure out what happens near infinity. 
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3b)
vertical asymptote when we divide by zero.

This happens when 3x+5=0

Thus, vertical asymptote at x=−5/3

For x> -5/3 the top is postive and the bottom is positive, so we are positive, hence +infinity.

For x<-5/3 the top is positive and the bottom is negative, hence -infinity.

4)
A function is continuous if the function on one side of the piece lines up with the other side.

Part 2 of our function is a straight line, as is part 3.

Thus they must be the same straight line.

Thus a=5 and b =-3

5)
We need the intermediate value theorem here- because we are trying to show that a solution exists.

We can use the intermediate value theorem, because the function is continuous.



6)
[honestly, a student which did as bad as this one wouldn't even reach this part of the exam... oh 
well...]

Tangent lines need slopes
y '=2x+6

Okay, so that line will never pass through the point (2,1) because 
1=2×2+6 is not true.


