
Soft Real-Time Systems

EECE 494 – Real-Time Systems Design

Elastic scheduling of real-time tasks

Ref: Elastic task model for adaptive rate control. Buttazzo, Lipari
and Abeni. IEEE Real-Time Systems Symposium, 1998.

Many models for soft real-time systems
}  Why?

}  There are a variety of soft real-time systems.

}  And there are a variety of ways in which their
behaviour can be altered.

}  In a multimedia system…
}  Frames can be dropped, i.e., jobs can be skipped.

}  Alternatively, it is possible to reduce the frame rate.
  Move from 60 fps to 30 fps or to 24 fps.

  We are changing the periodicity of a task.

3 UBC | EECE 494 | Real-Time Systems

The elastic task model
provides a natural
abstraction for such tasks.

4 UBC | EECE 494 | Real-Time Systems

Eadweard Muybridge

Elastic task scheduling

UBC | EECE 494 | Real-Time Systems 5

}  What if we need all jobs to meet their
deadlines... but we can allow tasks to execute at
lower frequencies (higher periods)?

}  Then we need to understand
}  When should we increase task periods?
}  And increase the periods by what extent?
}  And for which tasks?

Task model for elastic scheduling

UBC | EECE 494 | Real-Time Systems 6

}  For each task Ti :
}  There is an operating period range [Pi,min, Pi,max]

}  Pi,min is the best possible period

}  There is also a value Pi,0 that represents a nominal
period
}  This nominal period is preferred when we can not run the task at the best

possible period

}  For a hard real-time task:
}  Pi,min = Pi,max = Pi,0

}  If Pi,0 = Pi,max and Pi,min << Pi,max, the task is very flexible (highly elastic)

}  Only periods can be varied; execution times are constant

Task model for elastic scheduling

UBC | EECE 494 | Real-Time Systems 7

}  For each task Ti :
}  There is also an elasticity factor ki that represents

the flexibility of the task

Task ei Pi,0
Pi,min

Pi,max

 ki

T1 10 20 20 25 1

T2
 10 40 40 50 1

T3
 15 70 35 80 1

Additional parameters

Schedulability analysis

UBC | EECE 494 | Real-Time Systems 8

}  We will assume utilization bounds are used for
testing schedulability.

}  Depending on the scheduling policy (EDF or RM), we know the
utilization bound Ub

}  The goal of the elasticity is to ensure that the utilization of the set of
tasks does not exceed Ub

}  Of course, we need to scale down task utilizations if the processor
utilization threatens to exceed Ub (for instance, when we add a new
task)

}  How do we scale down task utilizations?

An example

UBC | EECE 494 | Real-Time Systems 9

}  Is this task set schedulable using EDF?
}  If each task were to use its nominal period then:

}  U = 10/20 + 10/40 + 15/70 = 0.964 < 1.

}  To improve the QoS for T3, we would like to use a period of 50 (between 35
and 80):
}  U = 10/20 + 10/40 + 15/50 = 1.05 > 1.

}  We could adjust the periods of T1 (set to 22) and T2 (set to 45):
}  U = 10/22 + 10/45 + 15/50 = 0.977.

Task ei Pi,0 Pi,min Pi,max ki

T1 10 20 20 25 1

T2
 10 40 40 50 1

T3
 15 70 35 80 1

The adjustment seems ad hoc. Can we systematically adjust task periods?

Period adjustment (rate adaptation)

UBC | EECE 494 | Real-Time Systems 10

}  At time instant t, let us suppose that task Ti is
operating with period Pi

}  Some of the tasks could be operating at the highest
possible period Pi = Pi,max

}  We cannot increase the periods of these tasks
}  Denote this set of tasks by M

If the utilization bound is Ub, then the remaining tasks – those not
in M – cannot have a combined utilization greater than Ub-UM.

Period adjustment (rate adaptation)

UBC | EECE 494 | Real-Time Systems 11

}  Let the set of tasks with variable/
adjustable periods be V.

}  U0 is the combined nominal utilization
of tasks in set V.

}  If U0 = Ub-UM, set the periods of all

tasks in V to their nominal periods.

}  If U0 < Ub-UM, we can improve the QoS
for some tasks.

}  If U0 > Ub-UM, we need to reduce the
QoS for some tasks.

If the utilization bound is Ub, then the
remaining tasks – those not in M – cannot have
a combined utilization greater than Ub-UM.

Ub

UM

U0

Period adjustment (rate adaptation)

UBC | EECE 494 | Real-Time Systems 12

}  If U0 < Ub-UM, we can improve the QoS for
some tasks.

}  How do we adjust task utilizations?
}  Use the elasticity coefficients, ki.

}  The excess capacity is [Ub-UM]-U0.We need to
distribute this among tasks in V.

Ub

UM

U0

Period adjustment (rate adaptation)

UBC | EECE 494 | Real-Time Systems 13

}  What if U0 > Ub-UM?

}  We do not need a new solution! Ub

UM

U0

Period adjustment (rate adaptation)

UBC | EECE 494 | Real-Time Systems 14

}  What do we do if the adjustment causes a task Ti to have a
period greater then Pi,max?

}  We have to set the period of that task to Pi,max,

}  Add this task to set M,

}  Remove the task from set V,

}  And try to adjust the periods once more for the task in V.

Detailed algorithm

UBC | EECE 494 | Real-Time Systems 15

Elastic task model for adaptive rate
control. Buttazzo, Lipari and Abeni.
RTSS 1998.

The elasticity analogy

UBC | EECE 494 | Real-Time Systems 16

Do not worry about the terminology here.

Compression and decompression

UBC | EECE 494 | Real-Time Systems 17

}  When workload reduces, which may be because
a task is complete and is removed from the task
set, other tasks can expand or return to their
nominal utilizations.

}  Compression/decompression refer to the
utilization of the task.
}  Increasing the period compresses the utilization.
}  Decreasing the period expands the utilization.

When do we compress/decompress?

UBC | EECE 494 | Real-Time Systems 18

}  Can we increase or decrease the period of a
task at any time instant?

}  Periods can be increased at any time (immediately).

}  Periods can be decreased (utilization increased) only
at the next release time of the task.

}  [If you want the detailed proof, consult the reference
article.]

Why decompress at specific instants?

UBC | EECE 494 | Real-Time Systems 19

}  Originally, U = 3/10 + 2/3 = 0.9666 < 1.

}  After changing periods at t=14: U = 3/5 + 2/6 = 0.9666 < 1.

}  If the period of T1 is changed at once (at t=14), T1 misses a
deadline.

Highlights

UBC | EECE 494 | Real-Time Systems 20

}  The elastic task model

}  Allows period (rate) adaptation in a real-time system.
}  Analogous to physical spring systems.

}  Like skip-based scheduling, elastic scheduling is
suitable for multimedia applications.

}  Also useful in manufacturing applications.
}  Silicon wafers processed in a semiconductor plant.

}  We can reduce the rate of processing but we cannot skip a
wafer.

What you should know

UBC | EECE 494 | Real-Time Systems 21

}  How do we adjust the periods of tasks?

}  When can we adjust the periods of tasks?

}  Period changes are performed, typically, when a new task is
added to the system (may need to compress tasks) or when a
task is removed (can decompress remaining tasks).

}  The choice of which soft real-time model to adopt depends on
the application and the expected behaviour.

Tasks with variable execution times

Ref: Algorithms for scheduling imprecise computations. Liu, et
al. IEEE Computer, vol. 25, no. 5, May 1991.

Lecture overview
}  Elastic scheduling allows us to adjust task

periods at times of overload

}  In this lecture, we will examine a third approach
}  Imprecise computation, which trades accuracy of

computation for schedulability
}  Assumes that the accuracy of computation is related

to the execution time allotted to the task

23 UBC | EECE 494 | Real-Time Systems

Why is the imprecise computation model useful?

UBC | EECE 494 | Real-Time Systems 24

}  The case for imprecise computations
}  For specific applications, approximate results

may suffice
}  Image processing (fuzzy frames)
}  Object tracking (location estimates rather than

accurate location)
}  Artificial intelligence algorithms typically perform a

search (shorter search time results in a lower quality
result)
}  Google’s search is not a bad example

UBC | EECE 494 | Real-Time Systems 25

Can return fewer pages if out of time.

How do we achieve the imprecise computation model?

UBC | EECE 494 | Real-Time Systems 26

}  We assume that tasks are iterative
}  The number of iterations suggests quality (fewer

iterations imply lower quality)
}  Terminate the task after a few iterations with

acceptable quality
}  Tasks may have a mandatory part

}  Any computation beyond this mandatory portion improves
the quality but the task is meaningless without the
mandatory portion

More examples

UBC | EECE 494 | Real-Time Systems 27

}  Radar tracking: Get estimated target locations in a timely
fashion rather than accurate information that is too late to be of
use

}  Multimedia systems: Transmit a low quality image in time rather
than missing the deadline, e.g., to meet the 24 fps requirement

}  Control systems: Produce an approximate result by a control
law as long as the controlled system, e.g., cruise control
system, remains stable

Scheduling imprecise tasks

UBC | EECE 494 | Real-Time Systems 28

}  Tasks are periodic with known period (Pi) and an execution
time range [ei,min, ei,max]

}  ei,min represents the mandatory execution required by each task

}  The accuracy of a task is highest when each job executes for
ei,max time units

}  First step
}  Ensure that the mandatory portions of all tasks are schedulable
}  If tasks are scheduled with rate monotonic priorities, we can use

the Liu & Layland bound

Example task set

UBC | EECE 494 | Real-Time Systems 29

Task Emin Emax P

T1 2 7 10

T2 4 8 25

T3 6 10 30

The mandatory portion of this task set is schedulable.

Scheduling imprecise tasks

UBC | EECE 494 | Real-Time Systems 30

}  Once we have ensured that the mandatory portions are schedulable,
we have many options

}  The loss in accuracy for each task can be specified by some error
function F
}  Let ei be the execution time of Ti then the error is some function of ei and ei,max

}  We could decide to minimize the (weighted) sum of errors
}  How do we find the values for {ei} that minimize the error?

Objective function Relative importance of the tasks

Subject to constraints

Constraints on execution time

Schedulability constraint

Linear program formulation

A simple error function

UBC | EECE 494 | Real-Time Systems 31

}  F(ei,max, ei) = ei,max – ei is a simple error function

}  Let us also assume that the weight of each task is 1.

A simple linear program

Solving the linear program

UBC | EECE 494 | Real-Time Systems 32

}  Intuition: increasing the execution time of a task by x decreases error by x.

}  The task with the largest period has the least utilization penalty.
}  Determine 1/Pi for each task. This is the utilization penalty for increasing the execution time of

Ti by 1 time unit.

}  Simplifying assumption: execution times are integers (or can be represented as integers).

}  Increase the execution time of the task with the smallest utilization penalty to
the maximum extent possible.

}  Then move to the task with the next smallest utilization penalty.

}  Repeat until the utilization bound is reached or no further progress is possible.

Task Emin Emax P

T1 2 7 10

T2 4 8 25

T3 6 10 30

Greedy algorithm

Solving the linear program

UBC | EECE 494 | Real-Time Systems 33

}  The mandatory utilization is 0.56. The Liu & Layland bound for 3 tasks is 0.7797.

}  The utilization penalty for T3 is 1/30=0.0333, for T2 is 1/25=0.04, for T1 is 1/10=0.1.

}  We can increase the execution time of T3 by 4 units at a cost of 4 x 0.0333 = 0.1333
}  The total utilization now becomes 0.6933.

}  We can increase the execution time of T2 by 2 units at a cost of 2 x 0.04 = 0.08
}  The total utilization now becomes 0.7733.

}  We cannot make any further increases without violating the utilization bound.
}  Thus we stop.

}  An optimal solution is e1=2, e2=6, e3=10.

Task Emin Emax P

T1 2 7 10

T2 4 8 25

T3 6 10 30

Highlights

UBC | EECE 494 | Real-Time Systems 34

}  We examined another task model for providing good QoS for soft real-time
systems.

}  The imprecise computation model trades off execution time for accuracy.

}  Different applications need different approaches to obtaining good quality of
service.

}  For each task parameter, we have studied some mechanism by which they can
be controlled and the entire system behaves in a “predictable” manner.

What you should know

UBC | EECE 494 | Real-Time Systems 35

}  What is the imprecise computation model?
}  Why, and where, is it useful?
}  How do you decide execution times under this

model?
}  Solve for the simple case of linear error function.

}  Ponder: Can we use elastic scheduling when
tasks have variable execution times? What
should the parameters for such task sets be?

