EXAM COVER SHEET

Course code: \qquad CHBE 241

Section: \qquad 101

Course name: Material and Energy Balances
Instructor name: \qquad Jonathan Verrett

Exam duration: \qquad
3 hours, 12:00pm to 3:00pm Dec 5, 2017

PLEASE ENSURE THAT ALL ELECTRONIC DEVICES (cell phones) ARE TURNED OFF AND PUT AWAY INTO KNAPSACKS.

ALL WATCHES MUST BE REMOVED AND ALSO STORED IN KNAPSACKS. ESPECIALLY ALL ANDROID AND APPLE SMART WATCHES.

Permitted Materials

Electronic devices:	
\boxtimes Non-programmable calculators	® Programmable calculators
\square Computers	\square Other:
Course material:	
\square Personal notes	\square Course notes (__ pages)
- number of pages:	\square Text book
- sides (e.g. single / dual): - size (e.g. $81 / 2^{\prime \prime} \times 11^{\prime \prime}$):	\square Other:

Additional Instructions:

- The exam consists of 3 questions and is out of 100 marks
- Make sure to look over all 3 questions and start with those you feel most comfortable with.
Some parts of questions contain numbers you can use if you could not solve the previous part. Using these is not advantageous or disadvantageous compared to using the answer you obtained to the previous part, even if your previous answers turn out to be incorrect.
- You cannot leave the exam in the first 30 minutes (to allow latecomers to arrive) or in the last 15 minutes (to keep an orderly end of the exam).
You must return all exam material with the exam including the equation sheet, but you may detach the equation sheet for ease of use during the exam.
Please have your UBC ID out so we can verify it.
Best of luck and happy holidays.

University Rules Governing Formal Examinations

1. Each examination candidate must be prepared to produce, upon the request of the invigilator or examiner, his or her UBCcard for identification.
2. Examination candidates are not permitted to ask questions of the examiners or invigilators, except in cases of supposed errors or ambiguities in examination questions, illegible or missing material, or the like.
3. No examination candidate shall be permitted to enter the examination room after the expiration of one-half hour from the scheduled starting time, or to leave during the first half hour of the examination. Should the examination run forty-five (45) minutes or less, no examination candidate shall be permitted to enter the examination room once the examination has begun.
4. Examination candidates must conduct themselves honestly and in accordance with established rules for a given examination, which will be articulated by the examiner or invigilator prior to the examination commencing. Should dishonest behaviour be observed by the examiner(s) or invigilator(s), pleas of accident or forgetfulness shall not be received.
5. Examination candidates suspected of any of the following, or any other similar practices, may be immediately dismissed from the examination by the examiner/invigilator, and may be subject to disciplinary action:
a. speaking or communicating with other examination candidates, unless otherwise authorized;
b. purposely exposing written papers to the view of other examination candidates or imaging devices;
c. purposely viewing the written papers of other examination candidates;
d. using or having visible at the place of writing any books, papers or other memory aid devices other than those authorized by the examiner(s); and,
e. using or operating electronic devices including but not limited to telephones, calculators, computers, or similar devices other than those authorized by the examiner(s)—(electronic devices other than those authorized by the examiner(s) must be completely powered down if present at the place of writing).
6. Examination candidates must not destroy or damage any examination material, must hand in all examination papers, and must not take any examination material from the examination room without permission of the examiner or invigilator.
7. Examination candidates must follow any additional examination rules or directions communicated by the examiner(s) or invigilator(s).

Page Intentionally Left Blank

1. [20 points] A liquid-liquid extractor is used to separate calendula oil (an essential oil from flowers) from other oils (O) using hexane (H). $200 \mathrm{~kg} / \mathrm{h}$ of a stream containing $10 \mathrm{wt} \%$ calendula oil (C) and the rest other oils (O) is sent to an extractor. This stream is put into contact with a stream of pure hexane (H). The distribution coefficient for this system, K , is equal to 0.05 , where K is the ratio of the mass fraction of calendula oil (C) in the stream containing mainly other oils (O) exiting the extractor to the mass fraction of calendula oil (C) in the stream containing mainly hexane (H) exiting the extractor. The system has been designed to extract 95% of the mass of calendula oil (C) entering into the stream containing mainly hexane (H) exiting the extractor. Assume that the hexane (H) and the other oils (O) are immiscible.
a. Draw a diagram for this system, labelling the streams and components present in each stream. (4 points)
b. Do a degree of freedom analysis on this system and show that it can be solved. List the unknowns and all equations you can use to solve the system. Include all material balances, even those that are not independent, as well as any extra equations. Use symbols based on your diagram. (10 points)
c. What flow of the propane in kg / h would be needed to carry out the extraction? (6 points)
2. [40 points] A liquid stream of pentane and hexane flows from the bottom of a distillation column at $80 \mathrm{~mol} / \mathrm{s}$ and is at $30^{\circ} \mathrm{C}$. It enters a reboiler and is heated to $45^{\circ} \mathrm{C}$ where 2 streams emerge. Some of the entering liquid is vapourized to be sent back to the column and the rest of it is removed from the process as liquid. The pressure in the reboiler is 1 atm . The liquid to vapour ratio out of the reboiler is 0.7 to 1 .

	Psat $\left(45^{\circ} \mathrm{C}\right)$	Psat $\left(30^{\circ} \mathrm{C}\right)$	Hvap	Tb	$\mathrm{Cp}(\mathrm{l})$	$\mathrm{Cp}(\mathrm{v})$
Units	mmHg	mmHg	$\mathrm{J} / \mathrm{mol}$	${ }^{\circ} \mathrm{C}$	$\mathrm{J} / \mathrm{mol} \mathrm{K}$	$\mathrm{J} / \mathrm{mol} \mathrm{K}$
Pentane	1020	615	25800	36	155	115
Hexane	338	187	28900	69	216	137

Note enthalpy and internal energy values below are in $\mathrm{kJ} / \mathrm{kg}$ and volumes are in $\mathrm{m}^{3} / \mathrm{kg}$
TABLE B. 7 Properties of Superheated Steam ${ }^{a}$

$\begin{gathered} P(\mathrm{bar}) \\ \left(T_{\text {sat. }}{ }^{\circ} \mathrm{C}\right) \end{gathered}$		Sat'd Water	Sat'd Steam	Temperat 50	$\text { C) } \rightarrow$	100	150	200	250	300	350
$\begin{gathered} 1.0 \\ (99.6) \end{gathered}$	\hat{H}	417.5	2675.4	209.3	314.0	2676	2776	2875	2975	3074	3176
	\hat{O}	417.5	2506.1	209.2	313.9	2507	2583	2658	2734	2811	2889
	$\stackrel{\rightharpoonup}{0}$	0.00104	1.69	0.00101	0.00103	1.69	1.94	2.17	2.40	2.64	2.87
5.0	\hat{H}	640.1	2747.5	209.7	314.3	419.4	632.2	2855	2961	3065	3168
(151.8)	0	639.6	2560.2	209.2	313.8	418.8	631.6	2643	2724	2803	2883
	\hat{V}	0.00109	0.375	0.00101	0.00103	0.00104	0.00109	0.425	0.474	0.522	0.571
10	H	762.6	2776.2	210.1	314.7	419.7	632.5	2827	2943	3052	3159
(179.9)	$\hat{0}$	761.5	2582	209.1	313.7	418.7	631.4	2621	2710	2794	2876
	\checkmark	0.00113	0.194	0.00101	0.00103	0.00104	0.00109	0.206	0.233	0.258	0.282

a) What is the composition of the streams entering and exiting the reboiler? ($\mathbf{1 2}$ points)
b) If only heat is exchanged with the reboiler, how much heat must be added to it in Watts? If you could not solve part a use a fraction of pentane of 0.6 entering, and flows of $40 \mathrm{~mol} / \mathrm{s}$ in each of the exiting streams with a vapour mole fraction of pentane of 0.7 and a liquid mole fraction of pentane of 0.5 exiting the reboiler. (12 points)
c) $180 \mathrm{~kg} / \mathrm{min}$ of steam is used to supply the reboiler with the energy it needs. Superheated steam at 10 bar and $200^{\circ} \mathrm{C}$ is put into contact with the walls of the reboiler and a mixture of liquid water and steam leaves at 10 bar. What is the mass fraction of steam in the exiting stream? If you could not solve part b use 500 kW as the energy required by the reboiler. (11 points)
d) A manometer containing a fluid with a specific gravity of 6.5 is used to measure the pressure in the column. The manometer is 200 cm higher on the side exposed to open atmosphere and the atmospheric pressure is 700 mmHg absolute. What are the gauge and absolute pressures in the column in kPa ? How does this result help to show that the pentane and hexane exiting this column would be a liquid? (5 points)
3. [40 points] Hydrogen and carbon monoxide are produced by a reaction between steam (water vapor) and propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$. Carbon monoxide also reacts with the steam, leading to the formation of additional hydrogen and $\mathrm{CO}_{2} .100 \mathrm{~mol} / \mathrm{min}$ of propane at $25^{\circ} \mathrm{C}$ is combined with a 50% fractional excess of water at $25^{\circ} \mathrm{C}$ to form a feed to the entire process. The feed is joined by a recycle and the combined streams are then fed to the reactor. The reactants are heated in the reactor, reacted to form products and then cooled to exit the reactor at $25^{\circ} \mathrm{C}$. The stream exiting the reactor is then sent to a separator where 80% of the water and 80% of the propane are recycled back to join the fresh feed. The rest of the components in the stream exiting the reactor leave the process. The entire process takes place at atmospheric pressure. If the overall conversion of propane is 85% and the selectivity of CO to CO_{2} is 5 , find the following:

Compound	$\mathrm{H}^{\circ} \mathrm{f}(\mathrm{kJ} / \mathrm{mol})$	$\mathrm{Cp}\left(\mathrm{kJ} / \mathrm{mol}{ }^{\circ} \mathrm{C}\right)$
$\mathrm{H} 2 \mathrm{O}(\mathrm{v})$	-242	0.046
$\mathrm{H} 2 \mathrm{O}(\mathrm{l})$	-286	0.075
$\mathrm{C} 3 \mathrm{H} 8(\mathrm{~g})$	-104	0.072
$\mathrm{CO} 2(\mathrm{~g})$	-393	0.044
$\mathrm{CO}(\mathrm{g})$	-110	0.042
$\mathrm{H} 2(\mathrm{~g})$	0	0.042

For water the boiling point at 1 atm is at $100^{\circ} \mathrm{C}$ and the heat of vapourization is $44 \mathrm{~kJ} / \mathrm{mol}$.
a. The single pass conversion in \% of propane. (5 points)
b. The volumetric flow of the fresh feed at $\operatorname{STP}\left(0^{\circ} \mathrm{C}, 1 \mathrm{~atm}\right)$ in $\underline{\mathrm{L} / \mathrm{min}}$. (5 points)
c. The flows of compounds into and out of the reactor in $\mathrm{mol} / \mathrm{min}$. (18 points)
d. If only heat is transferred from the reactor, how much heat will the reactor take in or give off in kW ? If you could not solve part \mathbf{c}, you can use the numbers below: (12 points)

Compound	ńin $(\mathrm{mol} / \mathrm{min})$	ńout $(\mathrm{mol} / \mathrm{min})$
C3H8	100	50
H2O (I)		600
CO		400
H2		150
CO2		450

Conversion factors

Mass
$1 \mathrm{~kg}=1000 \mathrm{~g}=0.001$ metric ton (tonne) $=2.20462 \mathrm{lb}_{\mathrm{m}}=35.27392 \mathrm{oz}$
$11 \mathrm{~b}_{\mathrm{m}}=16 \mathrm{oz}=5 \times 10^{-4}$ ton $=453.593 \mathrm{~g}=0.453593 \mathrm{~kg}$
Length
$1 \mathrm{~m}=100 \mathrm{~cm}=1000 \mathrm{~mm}=10^{6}$ microns $(\mu \mathrm{m})=10^{10}$ Angstroms $(\AA)=39.37 \mathrm{in}=3.2808 \mathrm{ft}=1.0936 \mathrm{yd}$ $=0.0006214 \mathrm{mile}$
$1 \mathrm{ft}=12 \mathrm{in}=1 / 3 \mathrm{yd}=0.3048 \mathrm{~m}=30.48 \mathrm{~cm}$
Volume
$1 \mathrm{~m}^{3}=1000 \mathrm{~L}=10^{6} \mathrm{~cm}^{3}=10^{6} \mathrm{~mL}=35.3145 \mathrm{ft}^{3}=219.97$ imperial gallons $=264.17 \mathrm{gal}=1056.68 \mathrm{qt}$
$1 \mathrm{ft}^{3}=1728 \mathrm{in}^{3}=7.4805 \mathrm{gal}=29.922 \mathrm{qt}=0.028317 \mathrm{~m}^{3}=28.317 \mathrm{~L}$
Density
$1 \mathrm{~g} / \mathrm{cm}^{3}=1000 \mathrm{~kg} / \mathrm{m}^{3}=62.43 \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}=$ density of liquid water at $4^{\circ} \mathrm{C}$ (for reference specific gravities)
Force

$$
\begin{aligned}
& 1 \mathrm{~N}=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}=10^{5} \text { dynes }=10^{5} \mathrm{~g} \cdot \mathrm{~cm} / \mathrm{s}^{2}=0.22481 \mathrm{lb}_{\mathrm{f}} \\
& 1 \mathrm{lb}_{\mathrm{f}}=32.174 \mathrm{lb}_{\mathrm{m}} \cdot \mathrm{ft} / \mathrm{s}^{2}=4.4482 \mathrm{~N}=4.4482 \times 10^{5} \text { dynes }
\end{aligned}
$$

Pressure
$1 \mathrm{~atm}=1.01325 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\left(\mathrm{~Pa}\right.$ or $\left.\mathrm{kg} / \mathrm{m} \cdot \mathrm{s}^{2}\right)=101.325 \mathrm{kPa}=1.01325 \mathrm{bar}=1.01325 \times 10^{6}$ dynes $/ \mathrm{cm}^{2}$
$=14.696 \mathrm{lb}_{\mathrm{f}} / \mathrm{in}^{2}(\mathrm{psi})=760 \mathrm{mmHg}$ at $0^{\circ} \mathrm{C}($ torr $)=10.333 \mathrm{~m} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ at $4^{\circ} \mathrm{C}=29.921$ inches Hg at $0^{\circ} \mathrm{C}$
$=406.8$ inches $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ at $4^{\circ} \mathrm{C}$

Energy

$1 \mathrm{~J}=1 \mathrm{~N} \cdot \mathrm{~m}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}=10^{7} \mathrm{ergs}=10^{7}$ dyne $\cdot \mathrm{cm}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}=2.778 \times 10^{-7} \mathrm{~kW} \cdot \mathrm{~h}=0.23901 \mathrm{cal}$ $=0.23901 \times 10^{-3} \mathrm{kcal}($ food calorie $)=0.7376 \mathrm{ft} \cdot \mathrm{lb}_{\mathrm{f}}=9.486 \times 10^{-4} \mathrm{Btu}$

Power
$1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s}=1 \mathrm{~N} \cdot \mathrm{~m} / \mathrm{s}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{3}=0.23901 \mathrm{cal} / \mathrm{s}=0.7376 \mathrm{ft} \cdot \mathrm{lb} / \mathrm{s}=9.486 \times 10^{-4} \mathrm{Btu} / \mathrm{s}=1.341 \times 10^{-3} \mathrm{hp}$
Temperature
$\mathrm{T}(\mathrm{K})=\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)+273.15$
$\mathrm{T}\left({ }^{\circ} \mathrm{R}\right)=\mathrm{T}\left({ }^{\circ} \mathrm{F}\right)+459.67$
$\mathrm{T}\left({ }^{\circ} \mathrm{R}\right)=1.8 \cdot \mathrm{~T}(\mathrm{~K})$
$\mathrm{T}\left({ }^{\circ} \mathrm{F}\right)=1.8 \cdot \mathrm{~T}\left({ }^{\circ} \mathrm{C}\right)+32$
Weight equation: $\mathrm{W}=\mathrm{mg}$
At earth's surface: $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$ or $32.174 \mathrm{ft} / \mathrm{s}^{2}$
$1 \mathrm{~N}=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$
$1 \mathrm{lb}_{\mathrm{f}}=32.174 \mathrm{lb}_{\mathrm{m}} \cdot \mathrm{ft} / \mathrm{s}^{2}$
Ideal Gas Constant
$\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}=8.314 \mathrm{~L} \mathrm{kPa} \mathrm{K}^{-1} \mathrm{~mol}^{-1}=8.314 \times 10^{-2} \mathrm{~L}^{\text {bar K}}{ }^{-1} \mathrm{~mol}^{-1}=62.36 \mathrm{~L} \mathrm{Torr} \mathrm{K}^{-1} \mathrm{~mol}^{-1}=1.987 \mathrm{cal}$ $\mathrm{K}^{-1} \mathrm{~mol}^{-1}=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}=10.73 \mathrm{ft}^{3} \mathrm{psi}^{\circ} \mathrm{R}^{-1} \mathrm{lbmol}^{-1}$

Moles
Avogadro's constant $=6.022 \times 10^{23} \mathrm{molecules} / \mathrm{mol}$

Density

$\rho=\frac{m}{V}=\frac{1}{\widehat{V}_{m}} ;$ Note that \hat{V}_{m} is specific volume $\quad S G=\frac{\rho}{\rho_{R E F}}$
where $\rho_{\text {REF }}=1 \mathrm{~g} / \mathrm{cm}^{3}$ for solids and liquids (water at $4^{\circ} \mathrm{C}$); $\rho_{\text {REF }}=1.2 \mathrm{~kg} / \mathrm{m}^{3}$ for gases (Air at $293 \mathrm{~K}, 1 \mathrm{~atm}$)
Ideal gas law - $P V=n R T ; \quad$ Molar volume for ideal gasses: $\widehat{V}_{n}=\frac{V}{n}=\frac{R T}{P}$

Composition

Mole fraction: $x_{i}=\frac{n_{i}}{\sum_{i} n_{i}} ; \quad$ mole percent $=100 \% * \mathrm{x}_{\mathrm{i}}$
Mass fraction: $w_{i}=\frac{m_{i}}{\sum_{i} m_{i}} ; \quad$ mass percent $=100 \% * \mathrm{w}_{\mathrm{i}}$
Converting between mass and mole fraction: $w_{i}=\frac{x_{i} M_{i}}{\sum_{i} x_{i} M_{i}} \quad x_{i}=\frac{w_{i} / M_{i}}{\sum_{i} w_{i} / M_{i}}$
Molarity $=\left[\right.$ moles $\left./ L_{\text {total }}\right] \quad$ Molality $=\left[\right.$ moles $\left./ \mathrm{kg}_{\text {solvent }}\right]$
By mass (typical for liquids) - Parts per million (ppm) $=\mathrm{w}_{\mathrm{i}} \times 10^{6}=\left(\mathrm{mg}_{\mathrm{i}} / \mathrm{kg}_{\text {total }}\right)$

$$
\text { Parts per billion }(\mathrm{ppb})=\mathrm{w}_{\mathrm{i}} \times 10^{9}=\left(\mu \mathrm{g}_{\mathrm{i}} / \mathrm{kg}_{\text {total }}\right)
$$

By volume (typical for gases) - Parts per million (ppm) $=\mathrm{y}_{\mathrm{i}} \times 10^{6}=\left(\mathrm{mL}_{i} / \mathrm{m}_{\text {total }}^{3}\right)$
Parts per billion $(\mathrm{ppb})=\mathrm{y}_{\mathrm{i}} \times 10^{9}=\left(\mu \mathrm{L} / \mathrm{m}_{\text {total }}^{3}\right)$
Mass/molar ratios - e.g. 1:5 $\mathrm{CH}_{4}: \mathrm{H}_{2} \mathrm{O}$ means 1 methane per 5 waters
Average molecular weight of a mixture - With mole fractions: $\bar{M}=\sum_{i} y_{i} M_{i}$
With mass fractions: $\frac{1}{\bar{M}}=\sum_{i} \frac{w_{i}}{M_{i}}$

Process Economics

Gross economic potential (GEP) = value of products - value of feeds
Net economic potential $($ NEP $)=$ GEP - cost of (utilities, labour, maintenance, interest)
Return on Investment $($ ROI $)=$ NEP/CC $* 100 \%$ Note that CC is for capital costs

Solution process

1. Draw a flowchart and label all known and unknown variables
2. Express what the problem statement wants in terms of your unknown variables
3. Convert all quantities to the same basis (dimensions)
4. Do a degree-of-freedom analysis (if necessary)
5. Solve equations (if possible based on DOF)
6. Check solutions by back substitution
7. Solve additional equations or scale basis of calculation for final solution (if required)

Equations

General Balance: Input + Generation - Output - Consumption $=$ Accumulation
Degrees of Freedom Analysis: $n_{d f}=n_{\text {unknowns }}-n_{\text {indep eqns }}$
Degrees of Freedom Calculations for reactive balances

Atomic Species DOF

+ \# unknowns
- \# independent atomic species balances
- \# independent molecular species balances on non-reacting species (includes inerts)
- \# other equations relating unknowns
= DOF

Reaction Extent DOF

+ \# unknowns
+ \# independent reactions (1 unknown ξ for each reaction)
- \# independent reactive species (1 equation with ξ involved for each reactive species)
- \# independent molecular species balances on non-reacting species (includes inerts)
- \# other equations relating unknowns
= DOF

Special case: splitters - all material balances reduce to 1 independent equation

Fractional excess: fractional excess of $A=\frac{\left(n_{A}\right)_{\text {feed }}-\left(n_{A}\right)_{\text {stoich }}}{\left(n_{A}\right)_{\text {stoich }}}$
Fractional conversion: $f=\frac{\text { moles reacted }}{\text { moles fed }}$ and percent conversion: \% conversion $=f \times 100 \%$
Reaction Extents mole balance on a species: $n_{i}=n_{i 0}+v_{i} \xi$

Yield: $\frac{\text { moles of desired product formed }}{\text { moles that would be formed if there were no side reactions }} \times 100 \%$
Selectivity: $\frac{\text { moles of desired product formed }}{\text { moles of the undesired product formed }}$
Overall conversion: $\frac{\text { reactant input to process-reactant output from process }}{\text { reactant input to process }}$
Single-pass conversion: $\frac{\text { reactant input to reactor-reactant output from reactor }}{\text { reactant input to reactor }}$
Equilibrium constant for reaction $\mathrm{aA}+\mathrm{bB} \leftrightarrow \mathrm{cC}+\mathrm{dD}: K(T)=\prod_{i} a_{i, e q}{ }^{v i}=\frac{\left[a_{, e q}\right]^{c}\left[a_{D, e q}\right]^{d}}{\left[a_{A, e q}\right]^{a}\left[a_{B, e q}\right]^{b}}$
Where activity is: $\quad a_{i} \approx y_{i} P /(1 \mathrm{~atm})$ for gases, $\quad a_{i} \approx x_{i}$ for liquids, $\quad a_{i} \approx 1$ for pure solids

Stack gasses - Wet basis (includes water), Dry basis does not include water
Theoretical oxygen: moles of O 2 needed for complete combustion of all fuel fed to reactor producing only CO_{2} (from carbon), $\mathrm{H}_{2} \mathrm{O}$ (from hydrogen) and SO_{2} (from sulphur).

Theoretical air: quantity of air that contains the theoretical oxygen, air is 21% oxygen and has a MW of $29 \mathrm{~g} / \mathrm{mol}$ Excess Air/ O_{2} : amount by which the air/ O_{2} fed into the reactor exceeds the theoretical air $/ \mathrm{O}_{2}$.

Percent excess air: $\frac{(\text { moles air } / O 2)_{\text {fed }}-(\text { moles air } / 02)_{\text {theoretical }}}{(\text { moles air } / O 2)_{\text {theoretical }}} \times 100 \%$

Modules 3/4- Phase Equilibrium

Pressure

Gauge to absolute conversion: $\mathrm{P}_{\text {gauge }}=\mathrm{P}_{\text {absolute }}-\mathrm{P}_{\text {atmospheric }}$
Manometer equation: $\mathrm{P}=P_{o}+\rho g\left(h_{o}-h\right)$

Density of Mixtures: by volume additivity $\frac{1}{\bar{\rho}}=\sum_{i=1}^{n} \frac{w_{i}}{\rho_{i}} \quad$ by simple average $\bar{\rho}=\sum_{i=1}^{n} w_{i} \rho_{i}$
Ideal Gas Law: $\quad P V=n R T \quad$ or $\quad P \dot{V}=\dot{n} R T \quad$ or $\quad P \hat{V}=R T$
Error on the ideal gas equation is less than 1% if: $\quad \hat{V}_{\text {ideal }}=\frac{R T}{P}>\frac{5 L}{m o l}$.or $\frac{80 f t^{3}}{l b m o l}$ (diatomic gasses)

$$
\hat{V}_{\text {ideal }}=\frac{R T}{P}>\frac{20 L}{m o l} . \text { or } \frac{320 f t^{3}}{l b m o l}(\text { other gasses })
$$

Standard Temperature $\left(0^{\circ} \mathrm{C}\right)$ and Pressure $(1 \mathrm{~atm}): \hat{V}_{S}=22.4 \frac{\mathrm{~m}^{3}(S T P)}{\text { kmol }}=22.4 \frac{L(S T P)}{\text { mol }}=359 \frac{f t^{3}(S T P)}{\text { lbmol }}$
Ideal gas mixtures \quad Partial pressure: $p_{A}=y_{A} P \quad$ and Dalton's Law: $P=\sum_{i=1}^{n} p_{i}=p_{A}+p_{B}+\cdots$

$$
\text { Partial volume: } v_{A}=y_{A} V \quad \text { and Amgat's Law: } V=\sum_{i=1}^{n} v_{i}=v_{A}+v_{B}+\cdots
$$

Reduced Properties Temperature: $T_{r}=T / T_{c} \quad$ Pressure:: $P_{r}=P / P_{c}$
Virial equation of state: $\frac{P \widehat{V}}{R T}=1+\frac{B}{\bar{V}}+\frac{C}{\widehat{V}^{2}}+\frac{D}{\hat{V}^{3}}+\cdots$
1-term approximation of Virial equation of state: $\frac{P \widehat{V}}{R T}=1+\frac{B P}{R T} \quad$ where $B=\frac{R T_{c}}{P_{c}}\left(B_{0}+\omega B_{1}\right)$
$B_{0}=0.083-\frac{0.422}{T_{r}^{1.6}} \quad B_{1}=0.139-\frac{0.172}{T_{r}^{4.2}}$
Van der Waals equation of state: $P=\frac{R T}{\hat{V}-b}-\frac{a}{\hat{V}^{2}} \quad$ where: $a=\frac{27 R^{2} T_{c}^{2}}{64 P_{c}} \quad b=\frac{R T_{c}}{8 P_{c}}$
Compressibility factor equation of state: $P V=z n R T \quad$ or $\quad P \widehat{V}=z R T$
Gibb's phase rule: $D F=2+c-\Pi-r$

- DF [=] degrees of freedom (\# intensive variables that can be specified)
- c [$=$] number of independent chemical species
- $\Pi[=]$ number of phases in a system at equilibrium
- $\mathrm{r}[=]$ number of independent equilibrium chemical reactions among the species

Vapour-Liquid Equilibrium

Clapeyron equation $\frac{d p^{*}}{d T}=\frac{\Delta \widehat{H}_{v}}{T\left(\widehat{V}_{g}-\widehat{V}_{l}\right)}$
Clausius-Clapeyron eqn: $\frac{d\left(\ln p^{*}\right)}{d(1 / T)}=\frac{\Delta \widehat{H}_{v}}{R}$ Assuming P is low so that $\widehat{V}_{g}-\widehat{V}_{l}=\widehat{V}_{g}$ and $\Delta \widehat{H}_{v}$ independent of T
Integrating, we get: $\ln p^{*}=\frac{-\Delta \hat{H}_{v}}{R T}+B \quad$ or $\quad \ln \left(p_{1}^{*} / p_{2}^{*}\right)=\frac{-\Delta \hat{H}_{v}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)$
Antoine eqn: $\log _{10} p^{*}=A-\frac{B}{T+C} \quad$ or $\quad \ln p^{*}=A-\frac{B}{T+C}$
Raoult's Law: $p_{i}=y_{i} \times P=x_{i} \times p_{i}^{*}(T)$ with $p_{i}^{*}(T)$ meaning vapour pressure [p_{i}^{*}] is a function of temp. [T$]$
Henry's Law: $p_{i}=y_{i} \times P=x_{i} / H_{i}(T)$
With $H_{i}(T)$ is the Henry's Law constant for species i in a specific solvent and is a function of temperature [T]

Relative Saturation (Relative Humidity): $s_{r}\left(h_{r}\right)=\frac{p_{i}}{p_{i}^{*}(T)} \times 100 \%$
Molal Saturation (Molal Humidity): $s_{m}\left(h_{m}\right)=\frac{p_{i}}{P-p_{i}}=\frac{\text { moles of vapour }}{\text { moles of "vapour free" (dry)gas }}$
Absolute Saturation (Absolute Humidity): $s_{a}\left(h_{a}\right)=\frac{p_{i} M_{i}}{\left(P-p_{i}\right) M_{d r y}}=\frac{\text { mass of vapour }}{\text { mass of dry gas }}$
Percentage Saturation (Percentage Humidity): $s_{p}\left(h_{p}\right)=\frac{s_{m}}{s_{m}^{*}} \times 100 \%=\frac{p_{i} /\left(P-p_{i}\right)}{p_{i}^{*} /\left(P-p_{i}^{*}\right)} \times 100 \%$
Bubble point temperature/pressure: $P_{B P}=\sum_{i=1}^{n} x_{i} p_{i}^{*}\left(T_{B P}\right)=x_{A} p_{A}^{*}\left(T_{B P}\right)+x_{B} p_{B}^{*}\left(T_{B P}\right)+\cdots$
Dew point temperature/pressure: $P_{D P}=1 / \sum_{i=1}^{n} \frac{y_{i}}{p_{i}^{*}\left(T_{D P}\right)}$

Liquid-Liquid Distribution coefficient or partition ratio: $K=\frac{\left(w_{A}\right)_{\text {phase }} 1}{\left(w_{A}\right)_{\text {phase } 2}}$

Adsorption

Linear region: $X_{i}^{*}=K c_{i} \quad$ or $\quad X_{i}^{*}=K^{\prime} p_{i} \quad$ Where X^{*} is in g adsorbate/g adsorbent
Langmuir Isotherm: $X_{i}^{*}=\frac{a K_{L} c_{i}}{1+K_{L} c_{i}} \quad$ or $\quad X_{i}^{*}=\frac{a K_{L^{\prime}} p_{i}}{1+K_{L^{\prime}} p_{i}} \quad$ Where a, K 's are fitted to data

Modules 5/6 Energy Balances

Closed systems: $\Delta U+\Delta E_{k}+\Delta E_{p}=\mathrm{Q}+\mathrm{W} \quad$ Where: $\Delta U=U_{f}-U_{i}$
Open systems: $\Delta \dot{H}+\Delta \dot{E}_{k}+\Delta \dot{E}_{p}=\dot{Q}+\dot{W}_{s} \quad$ Where: $\Delta \dot{H}=\Delta \dot{U}+\Delta(P \dot{V})$
Note: Adiabatic in an open or closed system means Q or $\dot{Q}=0$
Energy changes due to changes in pressure: For solids and liquids: $\Delta \widehat{H}=\Delta \widehat{U}+\Delta(P \widehat{V}) \approx \widehat{V} \Delta P$, all others $=0$
Energy changes due to changes in temperature:
Closed systems: $\Delta \widehat{U}=\int_{T_{1}}^{T_{2}} C_{v}(T) d T$
Liquids and Solids: $C_{p} \approx C_{v}$
Open systems: $\Delta \widehat{H}=\int_{T_{1}}^{T_{2}} C_{p}(T) d T$

Energy changes due to phase changes:
Open systems: $\Delta \widehat{H}_{m}(T)$ or $\Delta \widehat{H}_{v}(T)=$ heat of melting or vapourization at a specific temperature (T)
Closed systems: For solids/liquid: $\Delta \widehat{U}_{m} \approx \Delta \widehat{H}_{m} \quad$ For ideal gases: $\Delta \widehat{U}_{v} \approx \Delta \widehat{H}_{v}-R T$

Estimating heats of vapourization:

Note: T_{b} is the normal boiling point temperature (1 atm), T_{c} / P_{c} are critical temperature and pressure
Trouton's rule
Nonpolar liquids: $\Delta \widehat{H}_{v}(\mathrm{~kJ} / \mathrm{mol})=0.088 T_{b}(\mathrm{~K})$ Water, Low MW alcohols: $\Delta \widehat{H}_{v}(\mathrm{~kJ} / \mathrm{mol})=0.109 T_{b}(\mathrm{~K})$
Watson correlation: $\Delta \widehat{H}_{v}\left(T_{2}\right)=\Delta \widehat{H}_{v}\left(T_{1}\right)\left(\frac{T_{c}-T_{2}}{T_{c}-T_{1}}\right)^{0.38}$

Energy changes due to mixing:

Heat of solution $\Delta \widehat{H}_{s}(T, r)$ - change in enthalpy when 1 mole of solute is dissolved in " r " moles of solvent at a given temperature " T "

Reactive Energy Balances

Heat of reaction at a given T, P :

$$
\Delta H_{r}(T, P)=H_{\text {products }}-H_{\text {reactants }}
$$

$\Delta H_{r}>0$ endothermic (positive)
$\Delta H_{r}<0$ exothermic (negative)
Heat of formation $\left(\Delta \boldsymbol{H}_{\boldsymbol{f}}\right)$ of a compound is found from the combination of its elemental components as found naturally (eg. O_{2})

Standard heat of combustion $\left(\Delta \widehat{\boldsymbol{H}}_{\boldsymbol{c}}^{\boldsymbol{o}}\right)$ - Heat of reaction of an amount of the given compound with oxygen to yield specified products $\left(\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{SO}_{2}, \mathrm{~N}_{2}\right)$ where reactants and products are at $25^{\circ} \mathrm{C}, 1 \mathrm{~atm}$.

Heat of Reaction:

From Heats of Formation: $\Delta \boldsymbol{H}_{r}^{o}=\sum \boldsymbol{v}_{i} \cdot \Delta \widehat{\boldsymbol{H}}_{f, i}^{o}=\sum_{\text {products }}\left|\boldsymbol{v}_{i}\right| \cdot \Delta \widehat{\boldsymbol{H}}_{f, i}^{o}-\sum_{\text {reactants }}\left|\boldsymbol{v}_{\boldsymbol{i}}\right| \cdot \Delta \widehat{\boldsymbol{H}}_{f, i}^{o}$
From Heats of Combustion: $\Delta \boldsymbol{H}_{r}^{o}=-\sum \boldsymbol{v}_{i} \cdot \Delta \widehat{\boldsymbol{H}}_{c, i}^{o}=\sum_{\text {reactants }}\left|\boldsymbol{v}_{\boldsymbol{i}}\right| \cdot \Delta \widehat{\boldsymbol{H}}_{c, i}^{o}-\sum_{\text {products }}\left|\boldsymbol{v}_{\boldsymbol{i}}\right| \cdot \Delta \widehat{\boldsymbol{H}}_{c, i}^{o}$

Solution process for non-reactive energy balance problems

1. Create a list for all assumptions
2. Draw a flowchart and label all known and unknown variables
3. Do a degree-of-freedom analysis (if required)
4. Solve material balances as much as possible
5. Select appropriate reference states based on thermodynamic data available
6. Create inlet and outlet table with enthalpies
7. Solve energy balance

Solution strategies for energy balances on reactive processes

Heat of Reaction Method - Generally preferable for a single reaction system where $\Delta H r$ is known.

1. Same as non-reactive method, except
2. Calculate the extent of each reaction: $\xi=\frac{\left|\left(\dot{n}_{i}\right)_{\text {out }}-\left(\dot{n}_{i}\right)_{\text {in }}\right|}{\left|\left(\dot{v}_{i}\right)\right|}$
3. Calculate $\Delta \dot{H}$ using $\Delta \dot{H}=\sum_{\text {reactions }} \xi \Delta \dot{H}_{r}^{o}+\sum \dot{n}_{\text {out }} \cdot \widehat{H}_{\text {out }}-\sum \dot{n}_{\text {in }} \cdot \widehat{H}_{\text {in }}$ taking into account temperature or phase changes with \widehat{H} 's

Heat of Formation Method - Generally preferable for a multiple reaction system where $\Delta H r$ is unknown.

1. Same as non-reactive method, except
2. Find enthalpies of compounds based on heat of formation, taking into account temperature or phase changes, e.g. $\widehat{H}_{C 3 H 8(g)}=\Delta \widehat{H}_{f, C 3 H 8(l)}^{o}+\int_{T_{r e f}}^{T_{b}} C_{p, C 3 H 8(l)} \mathrm{dT}+\Delta \widehat{H}_{v, C 3 H 8}\left(T_{b}\right)+\int_{T_{b}}^{T} C_{p, C 3 H 8(v)} \mathrm{dT}$
3. Calculate $\Delta \dot{H}$ using $\Delta \dot{H}=\sum \dot{n}_{\text {out }} \cdot \widehat{H}_{\text {out }}-\sum \dot{n}_{\text {in }} \cdot \widehat{H}_{\text {in }}$
