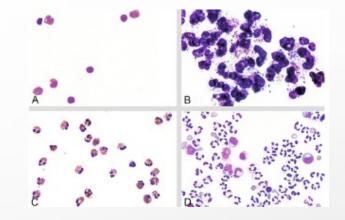


PATH 417 CASE 1 A STIFF NECK

MICROBIOLOGY LABORATORY

CATHERINE GAI

PRESENTATION OVERVIEW


(1) COMMON BACTERIAL PATHOGENS

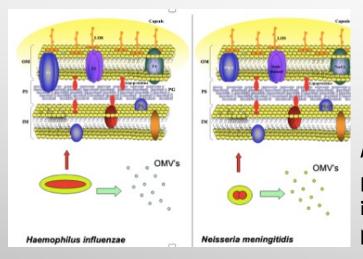
- Summary of what can lead to meningitis, in addition to N. meningitidis:
 - Other bacterial pathogens
 - Mechanism of transmission / prevention with vaccine
 - Signs & symptoms

(2) SAMPLES FOR LABORATORY TESTS

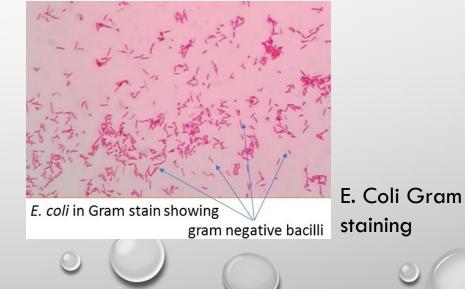
- Summary of samples taken for laboratory testing:
 - Method for collection
 - How they contribute to diagnosis

(3) TESTS & RESULT INTERPRETATION

- Tests for detecting / identifying the pathogens & result interpretation
 - Cell culture & CSF cytological analysis
 - Gram stain
 - Additional tests for CSF samples


(I) COMMON BACTERIA PATHOGENS Gram Positive Bacteria

Bacterial Pathogen	Mechanism of Transmission / Prevention	Signs & Symptoms
Streptococcus pneumoniae	Coughing, sneezing; Prevented with vaccine	Fever, stiff neck, coughing, hearing loss, cognitive impairment
Group B Streptococcus	Vertical transmission	Fever, neurological impairment
Listeria monocytogenes	Ingestion of contaminated food; Vertical transmission	Headache, stiff neck, confusion, loss of balance, convulsion


[1],[12],[13]

(I) COMMON BACTERIA PATHOGENS Gram Negative Bacteria

Bacterial Pathogen	Mechanism of Transmission / Prevention	Signs & Symptoms
Haemophilus influenzae	Respiratory droplet; Prevented with vaccine	Fever, headache, stiff neck, nausea
Escherichia coli	Ingestion of contaminated food; Vertical transmission	Fever, headache, vomiting, diarrhea

Membrane proteins of H. influenzae and N. Meningitidis

[1],[5]

(2) SAMPLES FOR LABORATORY TESTS Cerebrospinal Fluid

Method to obtain sample:

• lumbar puncture

Normal CSF appearance:

• clear

Components of CSF sample being analyzed:

- cell count (higher PMN level during infection)
- glucose level (lower during infection)
- protein level (higher during infection)

This will be followed by Gram Staining / PCR

Table 23.4

Typical biochemical changes seen in cerebrospinal fluid secondary to bacterial meningitis

Cerebrospinal fluid finding	Healthy newborn	Healthy child or adult	Bacterial meningitis
Total leukocytes (cells/mm ³)	<30	<6	>1000
Neutrophils (%)	20-60	0	>85-90
Protein (mg/dL)	30-150	20-40	>100-150
Glucose (mg/dL)	30-120	40-80	0-<40
Positive gram stain (%)	0	0	>85
Positive culture (%)	0	0	>95

[4],[8],[1

(2) SAMPLES FOR LABORATORY TESTS Blood Sample

Method to obtain sample:

• Serology test: take 1-3 ml of blood and dilute it to obtain a blood culture before or shortly after antibiotic treatment

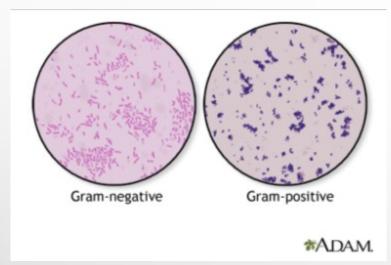
Analysis for the following to observe any abnormalities:

- Complete blood cell count (CBC)
- Coagulation study
- Electrolyte level
- Inflammatory marker (eg., C-reactive protein or procalcitonin) which distinguishes aseptic meningitis from bacterial meningitis

[1],[10],[15]

(3) TESTS & RESULTS Cell Culture & CSF Cytological Analysis

A new colony should be streaked; the CSF culture is grown on either Blood Agar Plate (BAP) or Chocolate Agar Plate (CAP)


- Bacteria culture in BAP or CAP:
 - N. meningitidis:
 - BAP: smooth, glistening, convex edged colonies; no hemolysis
 - CAP: large and opaque cultures; no hemolysis
 - S. pneumoniae:
 - BAP: small and mucoidal colonies with hemolysis
 - CAP: small and moist culture with hemolysis

Cytological examination of CSF's composition; the test involves analyzing the following:

[1],[2],[10,[16]]

- Cell count (elevated PMN level)
- Glucose level (low during infection)
- Protein level (high during infection)
- Other inflammatory markers
- Abnormal electrolyte level

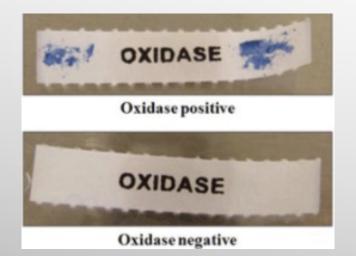
(3) TESTS & RESULTS Gram Stain

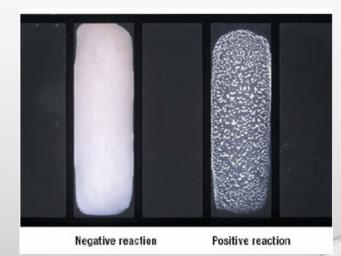
Visualization of gram-negative (left) and grampositive (right) bacteria using gram staining test

Purpose & method:

- To differentiate between gram-positive and gram-negative bacteria, based on their ability to retain crystal violet dye in the cell wall during solvent treatment
- Procedure brief summary:
 - Divide a glass slide into two, where one side is smeared with the sample and the other side with the organism in question

[9],[11],[17]


• Prepare the sample, where the key step is to prepare for staining with crystal violet ammonium oxalate


Result:

- Gram-positive bacteria: result in purple color
- Gram-negative bacteria: result in pink/red color

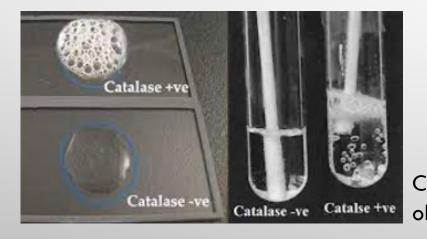
(3) TESTS & RESULTS Additional Tests for CSF Sample Overview

 Tests for M. meningitidis & H. influenza & result interpretation (2) Tests for detecting the presence of bacterial pathogens that can cause meningitis in general & result interpretation (3) Other tests & what bacterial pathogen they identify & result interpretation

(3) TESTS & RESULTS Tests for N. meningitidis & H. influenzae

Test	Bacterial Pathogen	Result
Kovac's Oxidase Test - determines presence of cytochrome c oxidase in bacterium	N. meningitidis & H. influenzae	Positive (filter paper): color change (blue) Positive (plate method): color change (purple)
Carbohydrate Utilization Test - tests pathogen's ability to produce acid from carbohydrate by oxidation of glucose and maltose	N. meningitidis	Positive: glucose & maltose medium turns yellow with turbidity development
Hemin & NAD Requirement Test - tests if the pathogen requires both hemin and NAD for growth	H. influenzae	Positive: H. influenzae only grow around disk with hemin + NAD
Slide Agglutination Sero-grouping Test - tests for agglutination of bacterium and serogroup- specific antisera for serotype identification	N. meningitidis & H. influenzae	Positive: strong agglutination with intensity rating of 3+ within 2 minutes

[9],[11]


(3) TESTS & RESULTS Testing the Presence of Bacterial Pathogens

Test	Bacterial Pathogen	Result
PCR Test - targets a unique sequence of the pathogen using complementary fluorescent oligonucleotide probe	N. meningitidis; H. influenzae; S. pneumoniae	 Positive: fluorescent signal observed: N. meningitidis: sequence for SodC H. influenzae: sequence for BexA S. pneumoniae: sequence for LytA
 Latex Agglutination Test detects pathogen by mixing a sample with latex particles coated with Ab to observe agglutination 	N. meningitidis; H. influenzae; S. pneumoniae	Positive: agglutination within 5-10 seconds

[2],[9],[11

(3) TESTS & RESULTS Other Tests

Test	Bacterial Pathogen	Result
Catalase Test - differentiates between gram-positive cocci based on if bubbles occur due to catalase enzyme	Staphylococcus vs Streptococcus	Positive: bubbles in the liquid (Staphylococcus)
Optochin Test - tests pathogen's susceptibility to optochin	S. pneumoniae	Positive: inhibition zone > 14 mm around an optochin disk

Catalase test observations

REFERENCES

- BEEK D, BROUWER M, HASBUN R, KOEDEL U, WHITNEY CG, WIJDICKS E. 2016. COMMUNITY ACQUIRED BACTERIAL MENINGITIS. NATURE. VOLUME 2, 74.
- B HENRY, ROY, J., RAMAKRISHNAN, P., ET AL. PROCALCITONIN AS A SERUM BIOMARKER FOR DIFFERENTIATION OF BACTERIAL MENINGITIS FROM VIRAL MENINGITIS IN CHILDREN. CLIN PED. 2015.55:749–764.
- CEREBROSPINAL FLUID (CSF) ANALYSIS: MEDLINEPLUS MEDICAL TEST [INTERNET]. MEDLINEPLUS.GOV. 2020. AVAILABLE FROM: HTTPS://MEDLINEPLUS.GOV/LAB-TESTS/CEREBROSPINAL-FLUID-CSF-ANALYSIS/?FBCLID=IWAR2R-_QW5KCQ9EDSONYIASLMNASR0TYANIE0C9NDNOE3WGZKRTFPKOQXRYY
- CURTIS S, STOBART K, VANDERMEER B, SIMEL DL, KLASSEN T. CLINICAL FEATURES SUGGESTIVE OF MENINGITIS IN CHILDREN: A SYSTEMATIC REVIEW OF PROSPECTIVE DATA. PEDIATRICS. 2010;126(5):952–60.
- E. COLI MENINGITIS [INTERNET]. MENINGITISNOW.ORG. [CITED 2022 JAN 22]. AVAILABLE FROM: HTTPS://WWW.MENINGITISNOW.ORG/MENINGITIS-EXPLAINED/WHAT-IS-MENINGITIS/TYPES-AND-CAUSES/E-COLI-MENINGITIS/
- ENCYCLOPEDIA, M., 2022. GRAM STAIN: MEDLINEPLUS MEDICAL ENCYCLOPEDIA IMAGE. [ONLINE] MEDLINEPLUS.GOV. RETRIEVED 18 JANUARY 2022, FROMHTTPS://MEDLINEPLUS.GOV/ENCY/IMAGEPAGES/19955.HTML
- FUGLSANG-DAMGAARD, D., PEDERSEN, G., SCHØNHEYDER, H. POSITIVE BLOOD CULTURES AND DIAGNOSIS OF BACTERIAL MENINGITIS IN CASES WITH NEGATIVE CULTURE OF CEREBROSPINAL FLUID. SCAN J. OF INF DIS. 2008;40(3):229-233.
- HUANG FS, BRADY RC, MORTENSEN J. 2019. BACTERIAL MENINGITIS, FEVER, HEADACHE AND A STIFF NECK...LOOKING PRETTY SICK. INTRODUCTION TO CLINICAL INFECTIOUS DISEASES 245-257.
- LAMMERT, J., 2007. TECHNIQUES IN MICROBIOLOGY: A STUDENT HANDBOOK. SAN FRANCISCO: PEARSON BENJAMIN CUMMINGS, PP.152-153

REFERENCES

- MAYO CLINIC STAFF. MENINGITIS [INTERNET]. MAYO CLINIC. MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH; 2020. AVAILABLE FROM: HTTPS://WWW.MAYOCLINIC.ORG/DISEASES-CONDITIONS/MENINGITIS/DIAGNOSIS-TREATMENT/DRC-20350514
- MENINGITIS LAB MANUAL: ID AND CHARACTERIZATION OF NEISSERIA | CDC. 2022. AVAILABLE FROM HTTPS://WWW.CDC.GOV/MENINGITIS/LAB-MANUAL/CHPT07-ID-CHARACTERIZATION-NM.HTML
- M, HANNA, NOOR A. STREPTOCOCCUS GROUP B [INTERNET]. STATPEARLS [INTERNET]. U.S. NATIONAL LIBRARY OF MEDICINE; 2021 [CITED 2022JAN20]. AVAILABLE FROM: HTTPS://WWW.NCBI.NLM.NIH.GOV/BOOKS/NBK553143/
- MOOK-KANAMORI BB, GELDHOFF M, VAN DER POLL T, VAN DE BEEK D. PATHOGENESIS AND PATHOPHYSIOLOGY OF PNEUMOCOCCAL MENINGITIS. CLINICAL MICROBIOLOGY REVIEWS. 2011JUL;24(3):557–91.
- PEOPLE AT INCREASED RISK AND HOW IT SPREADS [INTERNET]. CDC.GOV. 2021 [CITED 2022 JAN 21]. AVAILABLE FROM: HTTPS://WWW.CDC.GOV/GROUPBSTREP/ABOUT/TRANSMISSION-RISKS.HTML
- TACON CL, FLOWER O. DIAGNOSIS AND MANAGEMENT OF BACTERIAL MENINGITIS IN THE PAEDIATRIC POPULATION: A REVIEW. EMERGENCY MEDICINE INTERNATIONAL. 2012;2012:1–8.
- TUNKEL AR, HARTMAN BJ, KAPLAN SL, KAUFMAN BA, ROOS KL, SCHELD WM, WHITLEY RJ. PRACTICE GUIDELINES FOR THE MANAGEMENT OF BACTERIAL MENINGITIS. CLIN INFECT DIS. 2004 NOV;39(9):1267-84. AVAILABLE FROM: HTTPS://DOI.ORG/10.1086/425368
- WANGER, A., CHAVEZ, V., HUANG, R. MICROBIOLOGY AND MOLECULAR DIAGNOSIS IN PATHOLOGY: A COMPREHENSIVE REVIEW FOR BOARD PREPARATION, CERTIFICATION AND CLINICAL PRACTICE. 2017. PHILADELPHIA, PA: ELSEVIER SCIENCE PUBLISHING