

Case 3: From India to Canada Immune Response Ouestions

Lindsay Richter

The Case:

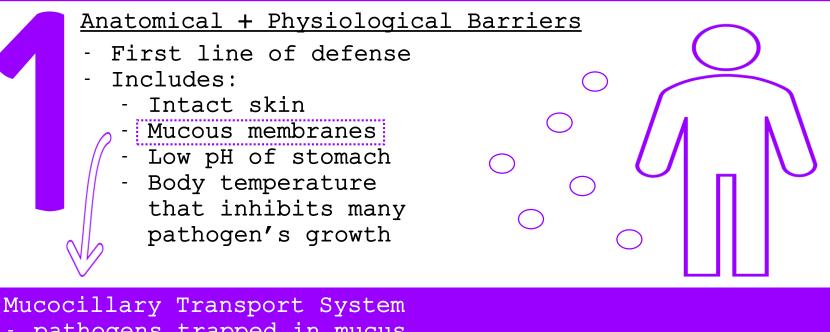
The **53**-year-old patient reports experiencing fevers, chills, night sweats, and a chronic productive cough over the past month. He immigrated from India one year ago.

The doctor confirms a fever of **38.5°C**, finds crackles in the right lung and decreased breath sounds in the right lower lung field.

After a chest X-ray and collection of deep sputum samples, the Public Health Unit notifies the patient to report to the local hospital for further assessment.

The likely pathogens:

Streptococcus pneumoniae


- o Gram-positive
- o Non-sporulating
- o Non-motile
- o Cocci(pairs or short chains)

Mycobacterium tuberculosis

- o Non-sporulating
- o Non-motile
- \circ Rod-shaped aerobes

Host Response

- Three lines of defense:
- 1. Anatomical + Physical Barriers
- 2. Innate Responses
- 3. Adaptive Responses

If anatomical + physiological barriers have been breached ...

- pathogens trapped in mucus
- mucus produced by cilia + goblet cells
- mucosal production increased during infection
- -> prevent pathogens from entering lower respiratory tract

Also involved in innate immunity

Host Response

Innate Immune Response

- Nonspecific
- Main functions:
 - Phagocytosis
 - Opsonisation
 - Activation of complement cascade
 - Chemotaxis of phagocytic cells
 - Activation of inflammatory response

- Mucus

- Lysozyme -> degrade glyosidic bonds of peptidoglycan
- Secretory IgA -> bind, neutralize, trap pathogens in mucus
- Lactoferrin -> sequesters iron from pathogens
- Lactoperoxidase -> generates toxic superoxide radicals

- Cilia

- Rhythmic waving motion to move mucus up and out of airways -> then swallowed + pathogens are killed by acidic stomach pH

- Antimicrobial proteins

- Surface proteins SP-A + SP-B -> block bacterial surface components + promote phagocytosis
- Defensins Alpha + Beta -> hydrophobic regions allow them to pass through bacterial membranes, aggregate in dimers, form a pore complex to cause membrane depolarization + lysis
- Cathelicidin LL-37 -> inserts in membranes to cause lysis

- Neutrophils

- Recruited from bone marrow into blood stream by cytokines
- Move via diapedesis, kill via phagocytosis, degranulation + neutrophil extracellular traps

Pathogen Recognition Receptors

- PRRs -> divided into phagocytosis receptors or Toll-like receptors (induce cell activation + cytokine production)
- PAMPs -> include LPS, mannose, bacterial RNA/DNA, peptidoglycans, lipoteichoic acids, lipoproteins, flagellin, microtubules
- In this case, important TLRs include:
 - TLR2 -> binds peptidoglycan + lipoproteins
 - TLR4 -> binds pneumolysin (*S. pneumoniae* secreted toxin)
 - C-type lectin receptor -> bind mycobacterial glycolipid trehalose dimycolate (TDM) to produce alarm cytokines (IL-6, TNF-a, IL-1)
- NOD2 -> sense muramyl dipeptide (MDP)

- Lysosomes

- Endosome fuse with lysosome
- Degraded by reactive oxygen or nitrogen species
- Pathway carried out by macrophages, neutrophils + dendritic cells

Signalling Pathways

- When TLRs binds -> activates NF-kB -> production of Type interferons (alpha + beta) -> activates NK cells, macrophages, T cells -> secrete cytokines
- TNF-a -> activates macrophages + increases vascular permeability
- TNF -> transmembrane protein that binds TNFR1 + TNFR2
- -> induce anti-apoptotic, pro-inflammatory signals by
- activating mitogen activated protein kinase/ nuclear factor
- TNR1 -> induce apoptotic + anti-inflammatory via caspase 8
- + Fas associated death domain.

Host Response

Adaptive Immune Response

- Initiated by dendritic cells -> DCs interact with PAMPs + FC receptors which stimulates maturation of DC -> increase MHC + granule antigens on surface, cytokine production + expression of CD80/CD86=B7
- MHC II present the antigenic peptides to TCR -> leads to transcription of IL-2 + binding of B7 to CD28 on T-cell
- Activates naïve Tcells to mature cytotoxic or helper Tcells

The Complement System

- Composed of serum proteins that act together in catalysis cascades to kill extracellular pathogens
- Include: opsins, membrane attack proteins, complement receptor proteins + initiatory molecules
- Activated via one of three pathways:

1. The Classical Pathway

- When IgM or IgG antibodies from past adaptive immune response bind to pathogens surface -> forms C3 convertase

2. The Lectin Pathway

- Mannose binding lectin (MBL) and ficolins (Abs) recognize PAMPs -> generates C3 convertase -> cleaves C3 into C3a, C3b, C3b, C5a, C5b

3. The Alternative Pathway

- C3 is spontaneously self-hydrolyzed, changes shape, binds Factor B -> cleaved to Bb and Ba by Factor D
- Alternative pathway C3-convertase = Bb + C3(H20)

C3 convertase -> cleaves C3 to C3a + C3b -> C3b binds surface + recruits to form C5 convertase -> cleaves C5 to C5a + C5b -> binds to surface with C2b to initiate the assembly of late complement proteins to form the MAC

1. Inflammatory Response

- C3a + C5a -> cause resident macrophages + mast cells to release histamine + TNF-a
- C5a -> chemoattractant for leukocytes
- Redness, heat, swelling, pain
- 2. Opsonisation
- C3b as an opsonincauses alteration of surface to be engulfed easily
- 3. Membrane Attack Complex
- Assembly of MAC with C5b on surface -> punctures surface + causes lysis

S. pneumoniae

- Cell wall features that elicit adaptive response: Sp1, PC + PspA
- Anti-PC AB response occurs earlier than anti-PspA response + is dependent on non-cognate activation of TCR-nonspecific Tcells
- Th2 cells helps with Bcell AB secretion for IgE synthesis/responses
 Th17 cells -> produce IL17A, IL17F,
- IL22, GMCSF, MIP3a, TNFa -> required in lungs for mucosal immunity
 - Follicular B helper cells critical in production of mucosal class switched Abs
 - Humoral immunity is vital
 - Lung epithelial cells express polymeric Ig receptors, transport IgA into airway lumen in presence of IL**17**
 - IgM activate complement
 - IgG increases inflammatory response -> allows myeloid cells to enter infection site -> high levels of IgG in alveoli

M. tuberculosis

-infected cells taken up by DCs -> activates Tcells -> produce TNFB, IL12, IL10

-antigen specific Th1, CD1 restricted Tcells + NK cells produce IFNy -> macrophages secrete TNF + produce ROS and proteases ->localized tissue damage -IL12 causes more IFNy to be prpduced by Th1 cells -humoral response considered unimportant + role remains not well understood

Products of C**3** convertase actions

Host Damage

M. tuberculosis

Damage caused by $\texttt{TNF-}\alpha$

- Cytotoxic to epithelial cells
- Reduces production of surfactant protein by type II epithelial cells
- Promotes fibroblast activity + production of fibroblast collagenases
- Promotes production of reactive oxygen intermediates -> cytotoxic -> enhances damage
- Involved in the tissue damage (edema and necrosis) of lesions -> organ dysfunction
- Excess circulating inflammatory cytokines -> night sweats, fever etc.

Damage caused by TGF- β

- Leads to extensive fibrosis + tissue damage
- Strong inhibitor of epithelial + endothelial cell growth -> increase production of macrophage collagenases -> breakdown collagen
 tissue damage

Damage caused by B cells

- Perpetuation of the local immune responses by granulomatous B cell aggregates -> development of tissue-damaging immunopathology observed in tuberculosis

S. pneumoniae

Failure of alveolar macrophages to clear neutrophils

- Results in neutrophil necrosis, release of reactive oxygen species + proteases, and subsequent tissue injury + inflammation

Other tissue damage caused by pro-inflammatory cytokines produced due to inflammation reactions -> similar to ones discussed in *M. tuberculosis*

Damage caused by $TNF - \alpha$

- Cytotoxic to epithelial cells
- Promotes production of reactive oxygen intermediates -> cytotoxic -> enhances damage
- Involved in the tissue damage (edema and necrosis) of lesions -> organ dysfunction
- Excess circulating inflammatory cytokines -> night sweats, fever etc.

Damage caused by TGF- β

- Leads to extensive fibrosis + tissue damage
- Strong inhibitor of epithelial + endothelial cell growth -> increase production of macrophage collagenases -> breakdown collagen
 tissue damage

Bacterial Evasion

M. tuberculosis

- Intracellular pathogen

Avoids exposure to Abs + complement by replicating within macrophages

Can resist + evade the innate + adaptive immune system by:		ntigen presentation by inhibiting gene
 (A) Disrupting phagosome-lysosome fusion Mycobacterial LAM -> reduce effect of VPS34 (kinase recruits EEA1) [EEA1 + VPS34: phagosome maturation through interactions with SNARE] 	 Downregulates Class II 19kDa lipoprotein bindinexpression 	oading of antigen peptide transactivator ng to TLR 2 thought to downregulate MHCII inhibiting IFNy-induced MHCII
<pre>Overview of phagosome-lysosome fusion: 1. Phagosome containing Mtb acquires a GTPase (Rab5) 2. Rab5 recruits the protein VPS34 3. VPS34 generates PI(3)P on cytosolic face of phagosome (B) Resisting r intermediates</pre>	increase survival in er - Remain inactive in sca	in PG -> reduce permeability of cell wall +
 4. PI(3)P complexes with early autosomal antigen-1 (EEA1) + Rab5 5. EEA1 recruits GTPase Rab7 (facilitates late fusion with endosomes 6. SNAREs found on transport + destination vesicles mediate vesicle fusion 	ase to convert methionine	 Induce TGF-B from monocytes + DCs -> inhibit Tcell proliferation + IFN-y production -> weaken inflammatory response Upregulate IL10 production in macrophages -> anti-inflammatory cytokine -> decreases IFN-y response

Bacterial Evasion

Capsular Polysaccharide

- Charged at high pH -> anti-phagocytic + disruptive to phagocyte function
- Increases repulsion to mucopolysaccharides in mucus
- Reduces neutrophil extracellular trap effectiveness
- Reduces binding to Fc region of IgG + inhibits conversion of bound C3b -> reduces effectiveness of classical + alternative complement pathway
- Functions to restrict autolysis + resist antibiotics

Pneumolysin

- Inhibits ciliary beating of respiratory epithelium -> limits ability to be expelled from lung
- Inhibits respiratory burst activity, hydrogen peroxide production + degranulation

Pneumococcal Surface Proteins

- PspA -> inhibit deposition of C3 due to its electronegative properties -> avoid opsonisation -> also protect against oxidative stress
- PspC -> a H-binding inhibitor of complement -> bind to factor H -> disrupt C3b formation in alternative complement pathway

IgA1 Protease

 Zinc metalloproteases: cleaves IgA1 which increases the changes of epithelial cell adhesion -> cleaves fragment antigen binding (Fab) -> bound to pneumococcal antigen from Fc portions of AB -> prevents host from recognizing/ initiating inflammatory response

Mutation

- Mutation + quick growth aids in antibiotic resistance
- Also capable of horizontal genetic exchange

S. pneumoniae

Outcome

M. tuberculosis

- Can lay dormant before becoming active with environment changes
- Untreated -> spread from blood cause secondary infections (affecting neurons, adrenal glands, cardiac and gastrointestinal tissues + reinoculate the lungs to cause secondary lesions
- Aggressive antibiotic treatment: isoniazid, pyrazinamide, rifampicin/priftin + ethambutol (3 months) -> isoniazid + rifampicin/priftin (6-12 months)
- Pyrainamide: binds RpsA + inhibit translation
- Ethambutanol: compromise membrane integrity
- Isoniazid: prevents fatty acid synthesis
- Reoccurrence rates high -> persistence state
- Complete immunity only achieve for short time
- Rise in multi-drug resistant strains w/overuse
- Individuals diagnosed -> lifetime risk for reinfection -> highest in first 5 years
- Preventative control measures needed: proper ventilation, proper hygiene, wearing a mask + advising infected individuals to stay home
- Vaccination of young children with Bacillus Calmatte-Guerin -> elicit adaptive immune response to Mtb infection/preventing progression

S. pneumoniae

- High frequency to undergo antigenic variation
 + spread to cause secondary infections
- Untreated -> can evade host immune responses for the duration of host's life
- Antibiotic treatment is necessary: macrolides, tetracyclines, fluoroquinolones, penicillin + vancomycins
- Macrolides: inhibit growth by binding 50S
- Penicillin: disrupt membrane integritiy
- Fluroquinolones: prevent DNA replication
- Tetracyclines: inhibit protein translation
- Vancomycin: inhibits cell wall synthesis
- Antibiotic resistance due to its extremely high replication rate + large cell densities
- Not possible to be immune for future infections -> 90 serotypes + capsule switching to change antigenic expression
- Preventative measures: hand hygiene + avoiding smoking
- Vaccine: PSSV23 23 strains -> elicits
 immune response against capsular
 polysaccharides -> cross-reactivity possible
 -> weak antibody response -> polysaccharides
 are less immunogenic than proteins
 Recently introduced conjugate vaccine