Image Processing Using Python

Software Team

Jenna Moledina Isabela Taketa

Python Code to Split Image Into R, G, and B Bands

The code on the right was used to split the image above into the separate bands.


```
from PIL import Image
def main():
    print("now in main")
    try:
        img = Image.open("/Users/isabela_taketa/Desktop/Capstone Test/pictureone.jpg")
        print(img.split())
        print("done printing the image")
        print("splitting image again and saving to variables")
        red, green, blue, alpha = img.split()
        print("saving individual images")
        red.save("/Users/isabela_taketa/Desktop/Capstone Test/red_line1.jpg")
        green.save("/Users/isabela_taketa/Desktop/Capstone Test/green_line1.jpg")
        blue.save("/Users/isabela_taketa/Desktop/Capstone Test/blue_line1.jpg")
        print("done saving individual images")
    except IOError as e:
        print("there was an error", e)
        pass
    _name__=="__main__":
    main()
```

Image Split Into Separate Bands

Python Code to Detect Edges

The code on the right was used to detect the edges in the red band image.

import cv2 import matplotlib.pyplot as plt # Open the image img = cv2.imread('/Users/isabela_taketa/Desktop/Capstone Test/line_red.jpg') # Apply Canny edges = cv2.Canny(img, 100, 200, 3, L2gradient=True) plt.figure() plt.figure() plt.title('Red Line') plt.imsave('line-red-canny.png', edges, cmap='gray', format='png') plt.imshow(edges, cmap='gray') plt.show()

Original Image X Output

Problem

• The code detects a lot more than the laser line

Next Steps

 Add a minimum intensity value to the code to limit the area where the edges are detected

Environmental Impact of 3D-Printing

LCA Team

Aleisha Reese Cerny

Old Approach

- LCA of solution vs. How much material is saved by using solution
- Material waste from failure is not a good selling point for an LCA comparison
 - Electricity use has the biggest impact

New Approach

- 3D printing manufacturing vs. Commercial manufacturing
 - Energy demand of polymer products reduced by 41-64%
 - Conduct systematic analysis of enviro impact of FDM
- Compare variations in FDM
 - Material (filament choice ABS vs PLA)
 - Does this make a difference? (ie. in energy consumption)

Conclusion

- "But if energy consumption is the biggest problem, then shouldn't reducing waste reduce (wasted) energy consumption?" – Chad
- Justify that reducing waste in FDM is a viable way to reduce impact

OR

 By justifying that FDM printers in general have less environmental impact compared to traditional manufacturing, we can justify that our failure prevention solution is necessary

Understanding Laser Line Projection

Hardware Team

Catherine Greenwood Sofia McGurk Clement Asiedu-Antwi

Euclid's Law of Reflection

Applying the Law of Reflection to Find Changes in Height

Variables: Minimize Theta

- X and Y are related by θ
- For a given y (defect size); goal is to maximize x
- X and tan(θ) are inversely proportional
- To maximize x, minimize tan(θ) by minimizing theta

Variables - Distance from Object

- Camera view is shaped like a pyramid - with isosceles sides
- Can assume the number of pixels is constant
- Vertical, horizontal and diagonal field of view angles are also constant

Variables - Distance from Object

- Using a 2D diagram we can calculate the effect of distance between the camera and surface on the resolution
- Base is proportional to distance; therefore image plane area is proportional to square of the distance
- With constant number of pixels, the area represented by each pixel is also proportional to the distance squared
- Minimum visible defect size is the image plane area of a pixel

Line Laser

- Single points have been shown in the simplified diagrams
- Our solution will be implemented with a line laser

Provisional Setup

 Accurate to 0.05cm of height deviation

Provisional Set up Steps 2.0

- Took photo of set up measured the angle with shapes on word (word calculated the angle).
- Took photo of the coin with the laser shining on it.
- Zoomed in the photo so that the scale on the ruler in the picture was equal to the scale on the ruler itself.
- Measured (with the ruler) the distance from the left edge of the laser on the coin to the left edge of the laser on the paper (value of x/2).
- Using Euclid's law of reflection calculate the thickness of the coin.

Provisional Set Up 2.0

- Thickness of a nickel from the royal Canadian mint: 1.76 mm
- Calculated Thickness: 1.73 mm

Error Calculation

- Systematic error:
 - Ruler (used twice): $\frac{1}{2}$ the resolution is 0.5mm assuming uniform distribution, uncertainty = 0.5mm/ $\sqrt{3}$ = 0.29mm
- Error from angle estimation??

Next Steps

- See if software team can analyze our image to clarify edges (reduce error).
- Move onto identifying detects.
- Improved setup with retort stands.

Expected Challenges (Keep in Mind)

- Distance between the surface (print) and the camera will change throughout the print run
- The camera position will have to change unless the image plane area is large enough
- Printer nozzle may get in the way of the reflected laser and the camera
- Location and angular accuracy when setting up the laser and camera will be difficult to achieve