MECH 563 Robotics

(3 Credits)

Course Structure

3 hours of lecture per week, T/Th 11-12:30, DMP 201.

Course Grading (approximate scheme only)

Lab	20 %
Midterm	30 %
Final Exam	50 %
	100 %

Instructor

Dr. Elizabeth A. Croft: ecroft@mech.ubc.ca

Office: CEME 2059 Telephone: 822-6614

Course Text

Mark W. Spong, Seth Hutchinson and M. Vidyasagar, Robot Modeling and Control, John Wiley and Sons, 2006.

Course Website

Course information will be posted on VISTA – www.vista.ubc.ca. If you are registered in the course you should be able to access the course materials.

Course notes are available on the website. Bring the notes to class - they are indispensable.

References

1. Books

- a) Sciavicco, L. and Siciliano, B., Modeling and Control of Robot Manipulators, McGraw Hill, New York, 2nd Ed, Springer-Verlag, 2000.
- b) S. B. Niku, Introduction to Robotics, Analysis, Systems, Applications, Prentice Hall, 2001.
- c) R.L. Andersson, A Robotic Ping-Pong Player Experiment in Real-Time Intelligent Control, MIT Press, 1988.
- d) J. Angeles, Spatial Kinematic Chains: Analysis, Synthesis and Optimization, Springer Verlag, 1982
- e) H. Asada and J.J. Slotine, Robot Analysis and Control, Wiley-Interscience, 1986.
- f) J.J. Craig, Introduction to Robotics: Mechanics and Controls, Second Ed., Addison Wesley, 1989.
- g) C.W. de Silva, Control, Sensors and Actuators, Prentice Hall, 1989.
- h) K.S. Fu, R.C. Gonzalez, C.S. Lee, Robotics: Control, Sensing, Vision, Intelligence, McGraw-Hill, 1987.

ii Course Information

 J.M. McCarthy, An Introduction to Theoretical Kinematics, MIT Press, 1991

- j) R.P. Paul, Robot Manipulators: Mathematics, Programming and Control, MIT Press, 1981.
- k) G. Strang, Linear Algebra and Its Applications, Second Ed. Academic Press, 1980. (or your favorite linear algebra text)
- I) S.G. Tzafestas, Ed., Intelligent Robotic Systems, Marcel Decker Inc., 1991.
- m) T. Yoshikawa, Foundations of Robotics Analysis and Control, MIT Press, 1990.
- n) V. Daniel Hunt, Robotics Sourcebook, Elsevier, 1988.

2. Journals

- a) ASME Journal of Dynamic Systems, Measurement and Control
- b) Robotics and Autonomous Systems, Elsevier.
- c) Robotica, Cambridge University Press.
- d) Journal of Field Robotics, John Wiley and Sons
- e) International Journal of Robotics Research, MIT Press
- f) IEEE Transactions on Robotics
- g) IEEE Transactions on Systems Man and Cybernetics
- h) International Journal of Human-Robot Interaction

3. Software

- a) Matlab Student edition is fine.
- b) Robotics Toolbox for Matlab by Peter I. Corke. See course website for the link to download this free toolbox.
- c) ROS Software is installed in the PACE lab. More information will be provided.

Tentative Course Outline

Approx. # of hours

1. Introduction to Robotics

1 Hour

- 1.1 What does a robot look like?
- 1.2 What do robots do?
- 1.3 Robot Manipulators
- 1.4 Some of the Research Issues involving Robotic Manipulators
- 1.5 Robots and Industry

2. Rigid Motions

2 Hours

- 2.1 Review of Linear Algebra. Notations and Definitions.
- 2.2 Frames and Rotations
- 2.3 Basic Rotations
- 2.4 Composition of Rotations
- 2.5 More 'Fun' Properties of Rotation Matrices The Axis-Angle Representation
- 2.6 Homogeneous Transformations
- 2.7 Basic Homogeneous Transformations

2.8 Exercises	
3. Forward Kinematics	2 Hours
3.1 Kinematic Chains	
3.2 The Devanit Hartenberg Convention	
3.3 Exercises	
4. Inverse Kinematics	2 Hours
4.1 Overview	
4.2 Algebraic Solution	
4.3 Geometric Solution	
4.4 Numerical Solution	
4.5 Summary	
4.6 Exercises	
5. Differential Kinematics	4 Hours
5.1 Differentiation of Rotation Matrices	
5.2 Velocity and Acceleration Kinematics	
5.3 The Manipulator Jacobian	
5.4 Geometric Formulation of the Jacobian	
5.5 Formulation of the Jacobian by Differentiation	
5.6 The General Jacobian Formulation	
5.7 Kinematic Singularities	
5.8 Redundancy	
5.9 Exercises	
6. Manipulator Statics	2 Hours
6.1 Forces and Torques	
6.2 The Principle of Virtual Work	
6.3 The Generalized Statics Relationship	
6.4 The Stiffness/Compliance Matrix	
6.4 Exercises	
7. Manipulator Dynamics	5 Hours
7.1 Hamilton's Principle	
7.2 Derivation of Lagrange's Equations from Hamilton's Principle	
7.3 Lagrange's Equations of Motion: Examples	
7.4 Formulation for Kinetic Energy for a N-Link Manipulator	
7.5 Generalized Equations of Motion for a N-Link Manipulator	
7.6 Example: Two-Link Planar Robot	
7.7 Christoffel Symbols	
7.8 The Recursive Newton Euler Formulation	
7.9 Direct and Inverse Dynamics	
7.10 Acceleration Directions	
7.11 Exercises	
*8. Path and Trajectory Planning	3 Hours
8.1 Definitions	
8.2 Joint-Space Trajectories	
8.3 Work-Space Trajectories	
ala a a a la fara a la a a la a la a la	

iv Course Information

- 8.4 Optimal Motion Planning
- 8.5 Obstacle Avoidance
- 8.6 Exercises
- 9. Computer Vision

4 Hours

- 9.1 Image Processing Fundamentals
- 9.2 Image Acquisition
- 9.3 Frame Grabbing
- 9.4 Image Formation
- 9.5 Camera Calibration
- 9.6 Introduction to Visual Servoing
- 10. Robot Motion Control

3 Hours

- 10.1 The Control Problem
- 10.2 Actuator Dynamics
- 10.3 PD Compensation
- 10.4 PID Compensation
- 10.5 Inverse Dynamics Compensation
- 10.6 Exercises
- 11. Interaction Control

2 Hours

- 11.1 Single Degree of Freedom Stiffness Control
 - 11.2 Inverse Dynamics in Task Space
 - 11.3 Impedance control
 - 11.4 Exercises
- 12. Project presentation

3-4 Hours

LAB

The lab outline will be posted on VISTA in late January. The lab involves implementing a motion planning task on a Willow Garage PR2.

There are no marked assignments for the course. However, there are assignments given with each chapter of the notes and solutions will be posted.

MIDTERM

February 14. Closed book. Formula sheet provided.

FINAL EXAM: The final exam is scheduled by the university. It will be a closed book exam covering the complete course. The invigilators will not answer any questions regarding material on the exam, during the exam period.

All exams are CLOSED BOOK.