
General Concepts

Introduction to real-time systems

2

Review

• What is a real-time system?

• What is an embedded system?

• What characteristic of a real-time system is probably the most important?

3

The schedulability question:
Drive-by-Wire Example

•  Consider a control system in a future vehicle

•  Steering wheel sampled every 10 ms – wheel positions adjusted accordingly (computing the
adjustment takes 4.5 ms of CPU time)

•  Brakes sampled every 4 ms – break pads adjusted accordingly (computing the adjustment
takes 2ms of CPU time)

•  Velocity is sampled every 15 ms – acceleration is adjusted accordingly (computing the
adjustment takes 0.45 ms)

•  For safe operation, adjustments must always be computed before the next sample is taken

•  Is it possible to always compute all adjustments in time?

•  The underlying computer system is a uniprocessor system.

4

The system design process
Specify Application

Platform
(Co-Specification)

Partition and Map
Application Tasks to the

Platform Resources

Schedule Execution Order

Implement (Code) Tasks

Verify Functionality (Co-
verification)

Do I meet System
Requirements?

Done

Start

Specify System
Requirements

Model (Co-simulate)
System Functionality

Do I meet System
Requirements?

Yes

No

No

Yes

•  Designing any computer system involves many steps.

•  Some steps are common to many types of systems.

•  A few steps are more important in a real-time system.

•  Scheduling is one such operation.

•  How do we know if a set of tasks can be scheduled
in a predictable manner?

•  We will touch upon other parts of the design process

later in the course.

5

The schedulability question:
Drive-by-Wire Example

• Consider a control system in a future vehicle

• Steering wheel sampled every 10 ms – wheel positions adjusted
accordingly (computing the adjustment takes 4.5 ms of CPU time)

• Brakes sampled every 4 ms – break pads adjusted accordingly
(computing the adjustment takes 2ms of CPU time)

• Velocity is sampled every 15 ms – acceleration is adjusted accordingly
(computing the adjustment takes 0.45 ms)

• For safe operation, adjustments must always be computed before the
next sample is taken

•  Is it possible to always compute all adjustments in time?

• The underlying computer system is a uniprocessor system.

6

Some terminology

• Tasks, periods, arrival-time, deadline, execution time, etc.

Time

Period, Pi

Task i

Take a sample Take the next sample

Compute adjustment

Must be done
Before next sample

7

Some terminology

• Tasks, periods, arrival-time, deadline, execution time, etc.

Time

Arrival time, ai
(Release time, ri)

Period, Pi

Arrival of
Next invocation

Task i

Must be done
Before next sample

8

Some terminology

•  Tasks, periods, arrival-time, deadline, execution time, etc.

•  Each invocation of a task is sometimes called a “job.”

•  A common assumption is that arrival times for the first job of all tasks is 0.

Time

Arrival time, ai
(Release time, ri)

Period, Pi

Arrival of
Next invocation

Task i

Must be done
Before next sample

Task i

Jobs of Task i

9

Some terminology

• Tasks, periods, arrival-time, deadline, execution time, etc.

Time

Arrival time, ai
(Release time, ri)

Deadline, di

Period, Pi

Relative Deadline, Di

Arrival of
Next invocation

Task i

(absolute deadline) di = (release time) ri+ (relative deadline) Di

10

Some terminology

• Tasks, periods, arrival-time, deadline, execution time, etc.

Time

Arrival time, ai
(Release time, ri)

Deadline, di

Period, Pi

Relative Deadline, Di

Arrival of
Next invocation

Task i

Execution time, ei
(Computation time, ci)

11

Some terminology

• Tasks, periods, arrival-time, deadline, execution time, etc.

Time

Arrival time, ai
(Release time, ri)

Deadline, di

Period, Pi

Relative Deadline, Di

Arrival of
Next invocation

Task i

Execution time, ei
(Computation time, ci)

Start time, si Finish time, fi

12

Back to the Drive-by-Wire example

• Find a schedule that makes sure all task invocations meet their
deadlines

• Often, relative deadlines are equal to the period lengths

Steering wheel task (4.5 ms every 10 ms)

Brakes task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15
ms)

13

Back to the Drive-by-Wire example

• Sanity check #1: Is the processor over-utilized? (e.g., if you
have 5 assignments due this time tomorrow and each takes 6
hours, then 5x6 = 30 > 24 -> you are overutilized)

• Hint: Check if processor utilization > 100%

Steering wheel task (4.5 ms every 10
ms)

Brakes task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15
ms)

14

Utilization of a task set

• For a set of tasks {Ti} with execution times {ei} and periods {Pi}, the
utilization, U, is the fraction of time, in the long run, for which the task set
will use the system.

15

Task scheduling

• In what order should tasks be executed?

• Hand-crafted schedule (fill timeline by hand)

• Cyclic executive scheduling

Steering wheel task (4.5 ms every 10 ms)

Brakes task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)

16

Task scheduling

• Cyclic executive scheduling

• Why is it called a “cyclic” executive?

• What are the problems with cyclic executive scheduling?

• Hard to adjust the schedule if tasks change

• Difficult to specify

Steering wheel task (4.5 ms every 10 ms)

Brakes task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)

17

Task scheduling

• In what order should tasks be executed?

• Cyclic executive scheduling or

• Priority based schedule (assign priorities; schedule is implied)

Steering wheel task (4.5 ms every 10 ms)

Brakes task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)

Intuition: Urgent tasks should be higher in priority

18

Task scheduling

Steering wheel task (4.5 ms every 10 ms)

Brakes task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)

• Preemptive versus non-preemptive?

• Preemptive: Higher-priority tasks can interrupt lower-priority ones

• Non-preemptive: They can’t

In this example, will non-preemptive scheduling work?

19

Task scheduling

Steering wheel task (4.5 ms every 10 ms)

Brakes task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)

In this example, will non-preemptive scheduling work?
 Hint: Compare relative deadlines of tasks to execution times of others

• Preemptive versus non-preemptive

• Preemptive: Higher-priority tasks can interrupt lower-priority ones

• Non-preemptive: They can’t

20

Timeline

• Even with preemption, deadlines are missed!

• Average utilization < 100%

Brakes task (2 ms every 4 ms)

Steering wheel task (4.5 ms every 10 ms)

Velocity control task (0.45 ms every 15 ms)

21

Timeline

Brakes task (2 ms every 4 ms)

Steering wheel task (4.5 ms every 10 ms)

Velocity control task (0.45 ms every 15 ms)

• Deadlines are missed!

• Average utilization < 100%

22

Timeline

Brakes task (2 ms every 4 ms)

Steering wheel task (4.5 ms every 10 ms)

Velocity control task (0.45 ms every 15 ms)

Fix:
Give this task invocation

a lower priority • Deadlines are missed!

• Average utilization < 100%

23

Timeline

Brakes task (2 ms every 4 ms)

Steering wheel task (4.5 ms every 10 ms)

Velocity control task (0.45 ms every 15 ms)

Fix:
Give this task invocation

a lower priority • Deadlines are missed!

• Average utilization < 100%

24

Task scheduling

• Static versus Dynamic priorities?

• Static: All jobs (instances) of the same task have the same priority

• Dynamic: Jobs (instances) of same task may have different
priorities

Brakes task (2 ms every 4 ms)

Steering wheel task (4.5 ms every 10 ms)

Velocity control task (0.45 ms every 15 ms)

Intuition: Dynamic priorities offer the designer more flexibility and hence
are more capable to meet deadlines

25

Examples of policies

• Static priority policies

• Rate monotonic priority: tasks with shorter periods get higher priority

• Deadline monotonic priority: tasks with shorter deadlines get higher
priority

• Rate monotonic priorities and deadline monotonic priorities are
identical if relative deadlines are equal to the periods

• Shortest job first policy

• Dynamic priority policies

• Earliest deadline first: jobs with the earliest absolute deadline take
highest priority

• First In, First Out: jobs with earliest arrival time take highest priority

26

Interesting questions

• What is the optimal dynamic priority scheduling
policy? (Optimal: meets all deadlines as long as any
other policy in its class can)

• Can it meet all deadlines as long as the processor
is not over-utilized? [U <= 1]

• What is the optimal static priority scheduling policy?

• When can it meet all deadlines?

• Can it meet all deadline as long as the processor is
not over-utilized?

27

Interesting questions

• What is the optimal dynamic priority scheduling
policy? (Optimal: meets all deadlines as long as any
other policy in its class can)

• Can it meet all deadlines as long as the processor
is not over-utilized? [U <= 1]

• What is the optimal static priority scheduling policy?

• When can it meet all deadlines?

• Can it meet all deadline as long as the processor is
not over-utilized?

Utilization
Bounds

28

Utilization bounds for schedulability

• U* is called a utilization bound for a given scheduling policy S if and only
if all task sets with utilization less than or equal to U* can be scheduled
using the policy S and there exists at least one task set with utilization (U*

+epsilon) that cannot be scheduled using policy S.

• Of course, the maximum value that U* can attain is 1.

29

Optimality result for EDF scheduling

•  EDF is the optimal dynamic priority scheduling policy

•  Priorities correspond to absolute deadlines

•  It can meet all deadlines whenever the processor utilization is less than 100%

•  Intuition:

•  You have HW1 due tomorrow and HW2 due the day after, which one do you do
first?

•  If you started with HW2 and met both deadlines you could have started with
HW1 (in EDF order) and still met both deadlines

•  EDF can meet deadlines whenever anyone else can

HW2 HW1

Deadline
HW1

Deadline
HW2 Ok?

30

• EDF is the optimal dynamic priority scheduling policy

•  It can meet all deadlines whenever the processor utilization is less than
100%

•  Intuition:

• You have HW1 due tomorrow and HW2 due the day after, which one
do you do first?

•  If you started with HW2 and met both deadlines you could have
started with HW1 (in EDF order) and still met both deadlines

• EDF can meet deadlines whenever anyone else can

HW2 HW1

Deadline
HW1

Deadline
HW2 Non-EDF OK implies EDF OK!

Optimality result for EDF scheduling

31

Why study static-priority policies?

• EDF is the optimal dynamic scheduling policy and has a utilization bound
of 1.

• The utilization bound is 1 (or 100%) when tasks have periods equal to
their relative deadlines.

• EDF, however, is hard to implement in most systems.

• Complexity is high.

• Job queues need to be reordered often (high overhead!).

• Most hardware subsystems allow only static priorities.

32

What you should know

• Definitions

• Tasks
• Task invocations
• Release/arrival time,
• Absolute deadline and relative deadline
• Period
• Start time and finish time

• Preemptive versus non-preemptive scheduling

• Priority-based scheduling

• Static versus dynamic priorities

• Utilization and Schedulability

• Optimality of EDF

33

Another example

• You are the system administrator of Ameritrade.com (online
stock trading site)

• You offer the following guarantee to your premium customers:

• Stock trades of less than a $100,000 value go through in 8
seconds or you charge no commission.

• Stock trades of more than a $100,000 value go through in 3
seconds or you charge no commission.

• Non-premium customers do not enjoy these guarantees

• Your job is to ensure that the premium customers are always
served within their agreed-upon maximum latencies. What needs
to be done?

34

For later: Aperiodic tasks

• Periodic tasks vs. aperiodic tasks

• Aperiodic tasks may arrive at any time

• Periodic tasks arrive at regular intervals [strictly Pi]

• Sporadic tasks

• Successive arrivals have a minimum separation distance [greater
than or equal to Pi].

• How does the lack of periodicity affect scheduling, and schedulability
analysis?

35

For later: Precedence constraints

•  In the discussion thus far, we focused on tasks that have no
dependencies.

• What if tasks have precedence constraints?

• Tasks can execute only if their predecessors have finished execution.

36

For later: Resource constraints

•  In addition to the CPU, tasks may need resources

• Memory

• Disk

• Shared data structures

• Types of resources

• Space multiplexed: An example is the memory system. Different tasks
may use different portions of the resource.

• Time multiplexed: Only one task can access the resource at a time. An
example is a data structure protected by a lock.

• How do resource constraints affect scheduling?

