

# 1. Symmetry, Group Theory, and Electronic Structure

2. Ground State Spectroscopic Methods

# 3. Excited State Spectroscopic Methods

- 3.1 Valence Electronic Spectroscopy
- **3.2 Core Electronic Spectroscopy**



### 3.2 Core Level Electronic Spectroscopy

# Core Level Spectroscopy

- probe deeper binding energy electron
- e<sup>-</sup> not directly involved in bonding
  - radial distribution of atomic orbitals is too small to allow for good overlap
- three types of processes expected
  - photoionisation  $\rightarrow$  XPS, EXAFS
  - bound state excitation  $\rightarrow XANES$
  - photoionisation + relaxation
    - X-ray photoemission  $\rightarrow$  XES
    - Auger electron emission  $\rightarrow \mathsf{AES}$
- each provides different information



Energy

-932 -952



# **Relaxation Processes in X-ray Photoexcitation Processes**

- Two basic mechanisms (like regular spectroscopy)
- Radiative (photoemission/fluorescence)
  - can be extremely informative
  - dominates at higher Z
  - more efficient in K-shell decay
- Non-radiative (electron ejection)
  - Auger decay (dominant at low Z)
  - Coster-Kronig decay
- measurements of 'absorption' are often made using secondary decay
  - fluorescence yield measurements
  - electron yield measurements



3.2 Core Level Electronic Spectroscopy

# Nomenclature for X-ray Spectroscopy $\rightarrow$ living with history...

- still use old physics terminology... Shell<sub>Line#</sub>
  - use first atomic quantum number labels: *K* = 1, *L* = 2, *M* = 3, *etc*.
  - line number simply by energy ordering of different components

- higher energy = lower number
- very important more absorption lines than orbitals...
  - excited state Spin-Orbit Coupling!
  - e.g. 2p splits into 2p<sub>1/2</sub> and 2p<sub>3/2</sub>

- XES  $\rightarrow$  second labels are given  $\alpha_i$ ,  $\beta_i$  numbering based on origin of decay
- AES  $\rightarrow$  three labels describing origin of each electron involved...











### 3.2 Core Level Electronic Spectroscopy

XES



AES



# X-ray Photoelectron Spectroscopy (XPS)

- aka ESCA (electron spectroscopy for chemical analysis)
  - binding energies are distinct for specific core orbitals element specific!
  - often used for elemental analysis of complex systems
- ionisation of core "atomic" levels
  - core electrons are perturbed through shielding/deshielding
  - binding energy is obtained from Einstein equation:  $E_k = h\nu E_b$
  - shift in binding energy from 'reference' give chemical shift
- core binding energies unique for each element
  - generally assume that binding energy is energy of atomic orbital in initial species → Koopmans' theorem
    - no change in electronic structure due to ionisation
    - this is never really true but generally not bad



### 3.2.1 X-ray Photoelectron Spectroscopy (XPS)

## Selected Electron Binding Energies

| Element | <b>K 1</b> s | L <sub>1</sub> 2s | L <sub>2</sub> 2p <sub>1/2</sub> | L <sub>3</sub> 2p <sub>3/2</sub> | <b>M</b> <sub>1</sub> 3s | M <sub>2</sub> 3p <sub>1/2</sub> | M <sub>3</sub> 3p <sub>3/2</sub> |
|---------|--------------|-------------------|----------------------------------|----------------------------------|--------------------------|----------------------------------|----------------------------------|
| 1 H     | 13.6         |                   |                                  |                                  |                          |                                  |                                  |
| 2 He    | 24.6*        |                   |                                  |                                  |                          |                                  |                                  |
| 3 Li    | 54.7*        |                   |                                  |                                  |                          |                                  |                                  |
| 4 Be    | 111.5*       |                   |                                  |                                  |                          |                                  |                                  |
| 5 B     | 188*         |                   |                                  |                                  |                          |                                  |                                  |
| 6 C     | 284.2*       |                   |                                  |                                  |                          |                                  |                                  |
| 7 N     | 409.9*       | 37.3*             |                                  |                                  |                          |                                  |                                  |
| 8 O     | 543.1*       | 41.6*             |                                  |                                  |                          |                                  |                                  |
| 9 F     | 696.7*       |                   |                                  |                                  |                          |                                  |                                  |
| 10 Ne   | 870.2*       | 48.5*             | 21.7*                            | 21.6*                            |                          |                                  |                                  |
| 11 Na   | 1070.8†      | 63.5†             | 30.65                            | 30.81                            |                          |                                  |                                  |
| 12 Mg   | 1303.0†      | 88.7              | 49.78                            | 49.50                            |                          |                                  |                                  |
| 13 A1   | 1559.6       | 117.8             | 72.95                            | 72.55                            |                          |                                  |                                  |
| 14 Si   | 1839         | 149.7*b           | 99.82                            | 99.42                            |                          |                                  |                                  |
| 15 P    | 2145.5       | 189*              | 136*                             | 135*                             |                          |                                  |                                  |
| 16 S    | 2472         | 230.9             | 163.6*                           | 162.5*                           |                          |                                  |                                  |
| 17 Cl   | 2822.4       | 270*              | 202*                             | 200*                             |                          |                                  |                                  |
| 18 Ar   | 3205.9*      | 326.3*            | 250.6†                           | 248.4*                           | 29.3*                    | 15.9*                            | 15.7*                            |
| 19 K    | 3608.4*      | 378.6*            | 297.3*                           | 294.6*                           | 34.8*                    | 18.3*                            | 18.3*                            |
| 20 Ca   | 4038.5*      | 438.4†            | 349.7†                           | 346.2†                           | 44.3 †                   | 25.4†                            | 25.4†                            |
| 21 Sc   | 4492         | 498.0*            | 403.6*                           | 398.7*                           | 51.1*                    | 28.3*                            | 28.3*                            |
| 22 Ti   | 4966         | 560.9†            | 460.2†                           | 453.8†                           | 58.7†                    | 32.6†                            | 32.6†                            |



### 3.2.1 X-ray Photoelectron Spectroscopy (XPS)

- Effect of Excited State Spin Orbit Coupling...
  - splits transitions from orbitals that carry orbital angular momentum (p,d,f)
  - relative intensity of peaks depends on J-degeneracy (2J+1)



- magnitude of SOC changes little function of atomic orbitals not molecular species
  - some (generally small) effect from effective charge on atom and chemical shielding



# **Core Level Chemical Shifts**

- directly related to effective nuclear charge ( $Z_{eff}$ ) on atom
  - chemical shifts can be correlated with oxidation state of atom



### 3.2.1 X-ray Photoelectron Spectroscopy (XPS)



notice orientation of energy scale



### 3.2.1 X-ray Photoelectron Spectroscopy (XPS)

 $4f_{7/2}$ 





# Satellite Features in Core Level PES Spectra

- Additional features are often observed in a PES spectrum
- atomic orbital picture is simplistic two sources of complication
  - atomic multiplets (states not orbitals)
  - charge transfer effects (molecules not atoms)
- Ground State Atomic Term Symbols (a.k.a. atomic multiplets)

$$\begin{array}{l} 3d^{1} \rightarrow {}^{2}D \\ 3d^{2} \rightarrow {}^{3}F, {}^{1}G, {}^{3}P, {}^{1}D, {}^{1}S, \dots \\ 3d^{5} \rightarrow {}^{4}S, {}^{4}G, {}^{4}P, {}^{4}D, {}^{2}I, {}^{4}F, {}^{2}D, {}^{2}F, \dots \end{array}$$

- excited state terms are even more complicated
- coupling of core hole with valence electrons (e.g. 2p<sup>5</sup>3d<sup>n</sup>)



### **Atomic Multiplets in XPS Spectra**









- can dramatically complicate the spectrum
- largest effect when purely *atomic* spectra...
  - remember: multiplet effects come from electron-electron repulsion
  - repulsion decreases with electron delocalisation (covalency of metal-ligand bonds)



# Effects of Metal-Ligand Covalency in XPS Spectra

- delocalization over ligands complicates GS and ES wavefunctions
- decreases effect of atomic multiplets (collapses multiplets)
- adds "charge transfer" terms to the wavefunctions
  - delocalization onto ligands is included by adding additional term

$$egin{aligned} \psi_{g}^{atomic} &= \left| 2p^{6}3d^{n} 
ight
angle \ \psi_{g}^{CT} &= lpha \left| 2p^{6}3d^{n} 
ight
angle \pm \sqrt{1-lpha^{2}} \left| 2p^{6}3d^{n+1}\underline{L} 
ight
angle \ \psi_{e}^{CT} &= lpha \left| 2p^{5}3d^{n} 
ight
angle \pm \sqrt{1-lpha^{2}} \left| 2p^{5}3d^{n+1}\underline{L} 
ight
angle \end{aligned}$$

- additional states for transitions to occur...
  - formally forbidden (two-electron)
  - can only occur if *electronic relaxation* occurs
    - change in wavefunction upon ionisation





### 3.2.1 X-ray Photoelectron Spectroscopy (XPS)

• Core Fe  $2p_{3/2}$  spectrum of  $[FeX_4]^{2-,1-}$  complexes





The University of British Columbia Department of Chemistry

# Auger Emission Spectroscopy

- $E_k$  of emitted Auger electron is defined by:
- true for both Auger and Coster-Kronig
- independent of initial photoionisation
  - can use fixed frequency X-ray tubes
  - can also use electron gun (most common)
- AES is not very sensitive to environme
  - mostly effective for surface elemental anal
  - but will always show up in PES spectra!

$$\begin{split} E_k = & E_1 - E_2 - E_3 \\ & = \Delta E_{12} - E_b \end{split}$$



# X-ray Absorption Spectroscopy

- Comparison with PES
  - lots of differences
  - somewhat analogous but different...
- three distinct regions defined in relation to ionisation energy:
  - pre-edge
    - (XANES)
  - edge jump
  - post-edge (EXAFS)

|        | PES        | XAS                |
|--------|------------|--------------------|
| scan   | $E_k$      | $h\nu$             |
| detect | primary e- | $h\nu$ , all $e^-$ |
| result | peaks      | edges (+ peaks)    |





### **Regions of the XAS Spectrum**

- The edge and pre-edge regions
  - generally known as X-ray Absorption Near Edge Structure (XANES)
  - region that occurs at or near the ionisation peak
  - bound state transitions (not complete ionisations!)
    - transitions handled in same way as Abs (except electron taken from core orbitals)
  - yields information about *electronic structure*
- The post-edge region
  - Extended X-ray Absorption Fine Structure (EXAFS)
  - oscillatory structure *after* ionization peak
  - results from *scattering* of photoelectrons with the surrounding atoms
  - yields geometric structure information



# Scattering of Photoelectrons

- photoemission from an isolated atom:
  - ionisation edge jump
  - decay as you get away from resonance
- photoemission from an atom within a specific arrangement of other atoms:
  - additional regular oscillations
  - scattering from other atoms
- interference effect on photoabsorption causes by neighbouring atoms:
  - like diffraction
  - use scattering theory to get geometric inform









# **Obtaining XAS data**

- measure the absorption of X-rays at different photon energies
- Three basic ways to measure absorption:
  - X-ray Transmission
    - direct measurement like UV/Vis Abs experiments
  - Total Fluorescence Yield (TFY)  $I ~E ~\propto \sigma_{b 
    u} ~E$ 
    - indirect measure assumes
  - Total Electron Yield (TEY)  $I \ E \propto \sigma_{Auger} \ E$ 
    - indirect measure assumes



#### X-ray Diffraction (XRD)

- X-ray scattering
  - interaction with electrons
  - large penetration depth
- · external directional source
  - requires long-range order
  - sees all scatterers
- biggest problem
  - phase of scattering
  - use MAD/heavy atom replacement

• electron scattering

**EXAFS** 

- interaction with electronic potential
- short penetration depth
- localized internal source
  - sees short-range order
  - only sees nearby scatterers
- biggest problem
  - phase of scattering
  - use references/ab initio calcs







# **Basic Theory of EXAFS**

• oscillations are visualized as  $\chi(k)$ 

$$\chi(E) = \frac{\mu(E) - \mu_0(E)}{\mu_0(E)}$$

- k relates to photoelectron wavefunction
  - $k = \sqrt{2m_e\hbar^2} E E_0$ known as wave vector
  - easily convert E to k



notice units of k space...

- more data means more periods of oscillation
  - getting higher k data is very useful (not always feasible)

 $k \propto \sqrt{\Delta E}$ 

e.g. k-range of 0-12 is good, but 0-15 is much better

gives ~40% more *k*-range



# The EXAFS Equation

• semi-classical derivation of electron scattering for *K*-shell EXAFS:

$$\chi(k) = -S_0^2 \sum_i N_i \frac{|f_-\pi, k_-|}{kR_i^2} e^{-2\sigma_i^2 k^2} e^{-2R_i/\lambda_- k_-} \sin 2kR_i + 2\delta_1 + \varphi_i - \pi, k$$

 $S_0^2 \equiv$  amplitude reduction factor (due to electronic relaxation)  $N_i \equiv$  number of scattering atoms of a particular type  $e^{-2R_i/\lambda k} \equiv$  damping factor to account for electron mean free path ( $\lambda$ )  $R_i \equiv$  distance to atom i  $e^{-2\sigma_i^2k^2} \equiv$  Debye-Waller factor (accounts for disorder in the sample)  $f \quad k \equiv$  scattering amplitude of atom i  $\delta_1 \equiv$  phase shift of the photoelectron due to photoemitting atom  $\varphi_i \quad k \equiv$  phase shift of the photoelectron due to scattering atom



# **Contributions to EXAFS oscillations**

- the EXAFS is effectively *a sum of sinusoidal waves* that are affected by
  - the number of nearby scatterers (grouped by "geometric equivalence")
    - amplitude
  - the identity of the scatterers
    - phase
    - amplitude
  - the distance of the scatterers from the photoemitting atom
    - period of the wave
    - damping of amplitude
  - the disorder (both static and dynamic) of the scatterers
    - damping of amplitude



# Fourier Transformation – moving to "real" space

• the *k*-space data can be transformed into *R*-space through FT:

 $FT(\chi(k)) = \operatorname{Re} \chi(k) + i \operatorname{Im} \chi(k)$ 

- each set of scatterers corresponds to a peak at a certain "distance"...
  - distance is NOT correct distance
  - distance has to be correctly for phase shift that occurs due to scatterers
  - phase shift is different for each type of atom!

sin 
$$2kR_i$$
  $(2\delta_1 + \varphi_i \pi, k)$  for  $n = 1$  atoms (N, O):  
shift is usually ~ -0.5Å





#### Number of Scatterers



#### Distance from Photoemitter



#### Identity of Scatterers



### Amount of disorder





# Multiple Scattering Pathways

- scattering is not necessarily a single event...
- can also have more complex scattering paths
  - to/from the same atoms
  - connecting three or more atoms
- phase shifts for multiple scattering paths is more complex
- depends on angle between scatterers
  - $180^\circ$  creates constructive interference
  - 90° creates destructive interference



single scattering



multiple scattering



## **General Approach to Fitting EXAFS Data**





- e.g. EXAFS deconvolution Nature of Cu catalyst on ZnO surface
  - heterogeneous catalytic system for methanol synthesis



Figure 4. Fourier transforms of the EXAFS data over k = 3.3-12.3 Å<sup>-1</sup> for the calcined 5% Cu/ZnO sample at room temperature (dash) and at 77 K (solid).



• e.g. EXAFS deconvolution – protocathechuate dioxygenase



Figure 5. Spectroscopically effective structures for (A)  $Fe^{III}PCD\{NO^-\}$ and (B)  $Fe^{III}PCD\{PCA,NO^-\}$ . The catecholate can either be the monoanion or the dianion depending on the  $pK_a$  at the  $Fe^{III}-NO^-$  site.



Figure 2. (a) Fourier transform of data for  $Fe^{III}PCD\{\}$  (—),  $Fe^{III}PCD\{NO^-\}$  (…), and  $Fe^{III}PCD\{PCA,NO^-\}$  (--). Inset: EXAFS data (—) and fits to the data (---) of  $Fe^{III}PCD\{\}$  (top),  $Fe^{III}PCD\{NO^-\}$  (middle), and  $Fe^{III}PCD\{PCA,NO^-\}$  (bottom). Data for  $Fe^{III}PCD\{\}$  and  $Fe^{III}PCD\{NO^-\}$  have been offset by 12 and 6 units, respectively.

|                          | Fe <sup>III</sup> PCD{} |       |                              | $Fe^{III}PCD\{NO^{-}\}$ |              |                              | $Fe^{III}PCD{PCA,NO^{-}}$ |       |                              |
|--------------------------|-------------------------|-------|------------------------------|-------------------------|--------------|------------------------------|---------------------------|-------|------------------------------|
|                          | CN                      | R (Å) | $\sigma^2$ (Å <sup>2</sup> ) | CN                      | <i>R</i> (Å) | $\sigma^2$ (Å <sup>2</sup> ) | CN                        | R (Å) | $\sigma^2$ (Å <sup>2</sup> ) |
| Fe-N/O                   | 3                       | 1.88  | 0.00220                      | 1                       | 1.91         | 0.00323                      | 1                         | 1.93  | .00288                       |
| Fe-N/O                   | 2                       | 2.10  | 0.00114                      | 4                       | 2.11         | 0.00276                      | 3                         | 2.10  | 0.00328                      |
| Fe-N/O                   |                         |       |                              |                         |              |                              | 2                         | 2.44  | 0.00173                      |
| Fe-C/N SS <sup>a</sup>   | 4                       | 3.01  | 0.00702                      | 4                       | 3.00         | 0.01008                      | 4                         | 2.82  | 0.00989                      |
| Fe-C MS <sup>a</sup>     | 6                       | 3.33  | 0.00104                      | 6                       | 3.24         | 0.00705                      | 7                         | 3.39  | 0.00317                      |
| Fe-C MS                  | 6                       | 4.30  | 0.00737                      | 6                       | 4.33         | 0.00655                      | 8                         | 4.31  | 0.00800                      |
| avg. Fe—N/O <i>R</i> (Å) |                         | 1.97  |                              |                         | 2.07         |                              |                           | 2.19  |                              |
| error <sup>b</sup>       |                         | 0.91  |                              |                         | 0.40         |                              |                           | 0.50  |                              |

Table 2. EXAFS Fit Results for Fe<sup>III</sup>PCD{}, Fe<sup>III</sup>PCD{NO<sup>-</sup>}, and Fe<sup>III</sup>PCD{PCA,NO<sup>-</sup>}

<sup>a</sup> SS: single scattering. MS: multiple scattering. <sup>b</sup> Error is defined as  $F = \sum [(\chi_{exp} - \chi_{obsd})^2 k^6] / \sum [\chi_{exp}^2 k^6]$ .



# Issues to remember with EXAFS

- unique approach to get geometry in non-crystalline samples
- standard approach to data acquisition gives AVERAGE spectrum
  - contributions from multiple sites can be difficult to deconvolute
- there are LOTS of parameters
  - too many to give unique fit
  - get chemically reasonable fit based on information from other sources
  - use *ab initio* simulations to compare to data
- Sensitivity of data differs for different parameters:
  - very sensitive to bond distances ( $R_i$  error within 0.02Å)
  - very *insensitive* to coordination number ( $N_i$  is usually within +/- 1)

- edge jump for ionisation
- *Important*: transitions rely on overlap between initial and final states
  - 1s orbital is very localized transitions will be localized on absorber atom...

Chemistry 529 (2009-W2)

- ionisation edge characterised by jump in intensity with slow decay
- transitions to bound states discrete transitions to empty molecular orbitals
- also: transitions to Rydberg states
  - final state is similar to ionisation but electron is not actually removed
- intense transitions will be electric dipole allowed such that:
- for *K*-edge (1*s*) XAS, we can expect

  - strong transitions to valence orbitals that contain np character



 $\left\langle \Psi_{g}\left|\hat{r}\right|\Psi_{e}\right
angle \neq 0$ 

 $\Delta S = 0$ 

 $\Delta l = \pm 1$ 

 $q \rightarrow u$ 

520





### Metal K-edge XANES Analysis

- Simplest example:  $Zn^{\parallel}$  (3 $d^{10}$ )  $O_h$  system
  - Zn 3d orbitals are full
  - lowest energy bound state transitions are  $1s \rightarrow 4p$  (4s are also empty but  $s \rightarrow s$  not ED allowed)
  - look at atomic description of  $1s \rightarrow 4p$  bound state transition:

$$\begin{vmatrix} 1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{10}4s^{0}4p^{0} \rangle \xrightarrow{h\nu} | 1s^{1}2s^{2}2p^{6}3s^{2}3p^{6}3d^{10}4s^{0}4p^{1} \rangle \\ \downarrow & \downarrow \\ Is^{2}4p^{0} \rangle \xrightarrow{h\nu} | 1s^{1}4p^{1} \rangle \\ \downarrow & \downarrow \\ \downarrow & \downarrow \\ Ia^{2}A_{1g} \otimes {}^{1}A_{1g} = {}^{1}A_{1g} \xrightarrow{h\nu} {}^{2}A_{1g} \otimes {}^{2}T_{1u} = (T_{1u}) + {}^{3}T_{1u} \\ \downarrow & \downarrow \\ Ia^{2}A_{1g} \xrightarrow{h\nu} {}^{1}A_{1g} \xrightarrow{h\nu} {}^{1}T_{1u} \\ \downarrow & \downarrow \\ Ia^{2}A_{1g} \xrightarrow{h\nu} {}^{1}T_{1u} \\ Ia^{2}A_{1g} \xrightarrow{h\nu} {}^{1}T_{1u} \\ \downarrow \\ Ia^{2}A_{1g} \xrightarrow{h\nu} {}^{1}T_{1u} \\ Ia^{2}A_{1g} \xrightarrow{h} {}^{1}T_{1u} \\ Ia^{2}A_{1g} \xrightarrow{h} {}^{1$$

- 4p orbital is very diffuse will have strong overlap with ligand orbitals...
  - get distribution of  $1s \rightarrow 4p$  intensity to charge transfer (CT) peaks [remember PES!]
  - ligand interactions must have  $t_{2q}$  symmetry (GT allowed mixing with 4p orbitals in  $O_h$ )



# Zn K-edge XANES

- contributions to 1s→4p are basicall at the 1s ionisation edge jump
- symmetry & nature of ligands changes effect of CT states

$$\Psi_{f} = \alpha \left| 1s^{1}4p^{1}L \right\rangle + \sqrt{1 - \alpha^{2}} \left| 1s^{1}4p^{2}\underline{L} \right\rangle$$

- not particularly informative
  - somewhat sensitive to symmetry
  - differences are relatively small





# Cu K-edge XANES Analysis

- Cu<sup>I</sup> is basically the same as  $Zn^{II} \rightarrow 3d^{10}$ 
  - Cu 3d orbitals are full
  - $1s \rightarrow 4p$  + CT contributions at/near the 1s edge jump
  - 4*p* splitting and CT contributions provide reference points for specific geometries / coordination numbers
- $Cu^{II}$  K-edge XANES is more interesting...
  - edge jump should be at different energy ( $\Delta Z_{eff}$ )
  - still have Cu  $1s \rightarrow 4p$
  - Cu 3d<sup>9</sup> system hole in 3d manifold, but...

 $\begin{array}{l} \left| 1s^2 3d^9 4p^0 \right\rangle \rightarrow \left| 1s^1 3d^9 4p^1 \right\rangle \text{ is electric dipole allowed} \\ \left| 1s^2 3d^9 4p^0 \right\rangle \rightarrow \left| 1s^1 3d^{10} 4p^0 \right\rangle \text{ is electric dipole forbidden} \end{array}$ 





# Cu<sup>"</sup> K-edge XANES Analysis

- XANES spectra are very different
  - edge jump is at higher energy in Cu<sup>II</sup> since Cu 1s is at deeper binding energy







8975

8985



# Pre-edge features in Metal K-edge XAS Spectra

- peaks are generally very weak
- result from  $1s \rightarrow 3d$  transitions:  $|1s^2 3d^n \rangle \rightarrow |1s^1 3d^{n+1} \rangle$
- possible final states can be decomposed into two terms



- therefore, can use  $d^{n+1}$  Tanabe Sugano diagrams
- but why can we see these transitions?
  - 1s→3d transitions are electric quadrupole allowed
  - proven by angle-dependence of peak intensities in  $\mathrm{Cu}^{\scriptscriptstyle ||}$  system  $\rightarrow$





- e.g. analysis of pre-edge features for O<sub>h</sub> Fe<sup>II</sup> Complexes
  - start with low-spin ferrous complexes
    - look for spin-allowed one-electron transitions



all other LF states are from forbidden two-electron transitions

no other <sup>2</sup>E to mix with so there should only be one pre-edge peak...



Figure 8. Fe K-edge XAS spectra, pre-edge fits, and theoretical analysis of octahedral low-spin Fe<sup>II</sup> complexes. (A) Fe K-edge spectra of Fe(HB(pZ)<sub>3</sub>)<sub>2</sub> (-), Fe(prpep)<sub>2</sub> (---), and K<sub>4</sub>[Fe(CN)<sub>6</sub>]·3H<sub>2</sub>O (···) where the inset is an expansion of the 1s  $\rightarrow$  3d pre-edge region, with the normalized absorption scale being 0.0–0.1. (B) Fit to the Fe K-edge pre-edge region of Fe(prpep)<sub>2</sub> including the experimental data (-), a fit to the data (- - -), the background function (- -), and the individual pre-edge peak from the fit (···). An edge peak was also needed in the fit of this data and is shown (- -; see the text). The inset displays the second derivative of the data (- -). (C) The single many-electron d<sup>(n+1)</sup> excited state.





- what about high-spin ferrous complexes?
  - more complex...

ground state configuration

+↓ + - +

 $(t_{2g})^2(e_g)^2$ 



other LF states result from forbidden two-electron transitions

intensity of peaks will depend on covalency but it's not easy since peaks are so weak...





# *Effect of lower symmetry and "3d-4p mixing"*

- $1s \rightarrow 3d$  are very weak because they are not ED allowed
- are there situations where this is not true?
  - if final states include some 4p character (even just a little)

*remember*:  $\langle \Psi_{g} | \hat{r} | \Psi_{e} \rangle \gg \langle \Psi_{g} | \hat{r}^{2} | \Psi_{e} \rangle$  by 2 orders of magnitude!

- how can we get 3d-4p mixing? (think back to Abs!)
  - centrosymmetric (*i.e.*, with inversion symmetry) cannot have 4p mixing

$$O_h \rightarrow \frac{3d \equiv e_g + t_{2g}}{4p \equiv t_{1u}} \qquad \qquad D_{4h} \rightarrow \frac{3d \equiv a_{1g} + b_{1g} + b_{2g} + e_g}{4p \equiv a_{2u} + e_u}$$

but non-centrosymmetric can...

$$T_d 
ightarrow rac{3d \equiv e + t_2}{4p \equiv t_2}$$
  $C_{4v} 
ightarrow rac{3d \equiv a_1 + b_1 + b_2 + e}{4p \equiv a_1 + e}$ 



• Effect of  $C_{4v}$  distortions in ferrous complexes...









distortion from  $O_h$  along z-axis causes:

splitting of final states 4p mixing into  $3d_{z^2}$  orbital

can be used to track distortions in metal active sites



### Summary of Metal K-edge XANES

- energy of edge jump is related to oxidation state  $(Z_{eff})$
- $1s \rightarrow 3d$  transitions are very weak unless 4p mixing can occur
  - can use intensity and splitting to investigate ligand field surrounding metal
- $1s \rightarrow 4p$  transitions are very strong but masked by the edge jump (difficult to interpret)
- can be very useful in determining coordination number of metal complexes
  - good complement to EXAFS!
- biggest problems
  - intensity of pre-edge features is very weak (EQ mechanism)
  - edge jump is huge compared to electronic transitions
- solution use metal *L*-edges (M 2*p* ionisation) instead of *K*-edges...
  - $2p \rightarrow 3d$  transitions are electric dipole allowed
  - edge jump is much weaker



# Metal L-edge XANES

- biggest problem final state analysis is more complicated
  - metal 2*p* hole is no longer *benign*  $|2p^{6}3d^{n}\rangle \rightarrow |2p^{5}3d^{n+1}\rangle$
  - must include both spin and orbital coupling to  $3d^{n+1}$
  - spin-orbit coupling!
- simplest case *L*-edges for Cu<sup>II</sup> (3*d*<sup>9</sup>) complexes
  - intensity of the L-edge peaks is directly related to the amount of 3*d* character in the singly-occupied orbital...

$$\begin{split} \Psi_{SOMO} &= \alpha \left| \left. 3d \right\rangle - \sqrt{1 - \alpha^2} \left| \left. L \right\rangle \right. \\ I &\propto \left| \left\langle \Psi_f \left| \hat{r} \right| \Psi_i \right\rangle \right|^2 = \left| \left\langle \Psi_{2p} \left| \hat{r} \right| \Psi_{SOMO} \right\rangle \right|^2 = \left| \left\langle \Psi_{2p} \left| \hat{r} \right| \alpha \Psi_{3d} \right\rangle \right|^2 \\ I &= \alpha^2 I_{2p \to 3d} \end{split}$$



<sup>#</sup>HOMO = √1 - α<sup>2</sup> Cu d<sub>2</sub><sup>2</sup>,

Figure 1. Intensity variation of Cu 2p to 3d  $\Psi_{HOMO}$  transition. Top left panel: Energy level diagram illustrating the observed Cu 2p to 3d  $\Psi_{HOMO}$ transition. Top right panel: Total integrated intensity of the L<sub>2</sub> and L<sub>3</sub> peaks normalized to the continuum intensity plotted as a function of estimated Cu 3d<sub>x<sup>2</sup>y<sup>2</sup></sub> character in the HOMO; 5% error bars are included. Lower panel: Cu L-edge spectra of (from top to bottom) D<sub>2d</sub>-Cs<sub>2</sub>CuCl<sub>4</sub>, D<sub>4h</sub>-(N-mph)<sub>2</sub>CuCl<sub>4</sub>, Cu(II) plastocyanin, and Cu(I) plastocyanin. The spectra have been normalized to the continuum intensity. Features marked with an asterisk (\*) in the Cu(I) plastocyanin data arise from incomplete reduction.



### K-edge XANES Spectra of non-metals

- for C, N, O often called NEXAFS
- use similar approaches to understanding bound state transitions
- electric dipole allowed transitions dominate  $(s \rightarrow p)$ 
  - good, because valence orbitals are often np orbitals
    - C,N,O,F  $\rightarrow 2p$
    - P,S,Cl  $\rightarrow$  3p
- comparisons of free vs. bound ligands is often extremely informative
  - shifts in valence orbital energies
  - quantify charge donation into metal (e.g.,  $\pi$ -backbonding)
  - direct measure of covalency into metal
- gives alternative viewpoint to bonding
  - can see electronic structure from different perspectives
  - very useful since spectroscopy always perturbs system and each approach looks at things in a slightly different way



# Summary of XANES Spectroscopy

- edge jump directly related to  $Z_{eff}$
- effective probe of empty valence orbitals
  - electron delocalisation
  - covalency of species
  - energetic effect of bonding
- element specific
  - look directly at a particular component of a complex system
  - can often see system from several different perspectives