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Core Level Spectroscopy

• probe deeper binding energy electrons...

• e- not directly involved in bonding

• radial distribution of atomic orbitals is too
small to allow for good overlap

• three types of processes expected

• photoionisation  XPS, EXAFS

• bound state excitation  XANES

• photoionisation + relaxation

• X-ray photoemission  XES

• Auger electron emission  AES

• each provides different information
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Relaxation Processes in X-ray Photoexcitation Processes

• Two basic mechanisms (like regular spectroscopy)

• Radiative (photoemission/fluorescence)

• can be extremely informative

• dominates at higher Z

• more efficient in K-shell decay

• Non-radiative (electron ejection)

• Auger decay (dominant at low Z)

• Coster-Kronig decay

• measurements of ‘absorption’ are
often made using secondary decay

• fluorescence yield measurements

• electron yield measurements
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Nomenclature for X-ray Spectroscopy  living with history...

• still use old physics terminology...

• use first atomic quantum number labels: K = 1, L = 2, M = 3, etc.

• line number simply by energy ordering of different components
• higher energy = lower number

• very important - more absorption lines than orbitals...

• excited state Spin-Orbit Coupling!

• e.g. 2p splits into 2p1/2 and 2p3/2

• for secondary processes, additional information is given 
based on what happens next:

• XES  second labels are given ai, bi numbering based on 
origin of decay

• AES  three labels describing origin of each electron involved... 
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XES AES
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X-ray Photoelectron Spectroscopy (XPS)

• aka ESCA (electron spectroscopy for chemical analysis)

• binding energies are distinct for specific core orbitals – element specific!

• often used for elemental analysis of complex systems

• ionisation of core “atomic” levels

• core electrons are perturbed through shielding/deshielding

• binding energy is obtained from Einstein equation:

• shift in binding energy from ‘reference’ give chemical shift

• core binding energies unique for each element

• generally assume that binding energy is energy of 
atomic orbital in initial species  Koopmans’ theorem

• no change in electronic structure due to ionisation

• this is never really true – but generally not bad
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Selected Electron Binding Energies
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• Effect of Excited State Spin Orbit Coupling…

• splits transitions from orbitals that carry orbital angular momentum (p,d,f)

• relative intensity of peaks depends on J-degeneracy  (2J+1)

• magnitude of SOC changes little – function of atomic orbitals not molecular species
• some (generally small) effect from effective charge on atom and chemical shielding

4/8/2010 10Chemistry 529 (2009-W2)

3.2.1 X-ray Photoelectron Spectroscopy (XPS)

1
21

2

0L
J

S

3
2

1 1
2 2

1 ,(4)

,(2)

L S

S S

7
2

1 5
2 2

3 ,(8)

,(6)

L S

S S

5
2

1 3
2 2

2 ,(6)

,(4)

L S

S S



The University of British Columbia
Department of Chemistry

Core Level Chemical Shifts

• directly related to effective nuclear charge (Zeff) on atom

• chemical shifts can be correlated with oxidation state of atom
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Satellite Features in Core Level PES Spectra

• Additional features are often observed in a PES spectrum

• atomic orbital picture is simplistic – two sources of complication

• atomic multiplets (states not orbitals)

• charge transfer effects (molecules not atoms)

• Ground State Atomic Term Symbols (a.k.a. atomic multiplets)

• excited state terms are even more complicated

• coupling of core hole with valence electrons (e.g. 2p53dn)
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Atomic Multiplets in XPS Spectra

• can dramatically complicate the spectrum

• largest effect when purely atomic spectra…
• remember: multiplet effects come from electron-electron repulsion

• repulsion decreases with electron delocalisation (covalency of metal-ligand bonds)
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Effects of Metal-Ligand Covalency in XPS Spectra

• delocalization over ligands complicates GS and ES wavefunctions

• decreases effect of atomic multiplets (collapses multiplets)

• adds “charge transfer” terms to the wavefunctions

• delocalization onto ligands is included by adding additional term

• additional states for transitions to occur…

• formally forbidden (two-electron)

• can only occur if electronic relaxation occurs
• change in wavefunction upon ionisation
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• Core Fe 2p3/2 spectrum of [FeX4]2-,1- complexes
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Auger Emission Spectroscopy

• Ek of emitted Auger electron is defined by:

• true for both Auger and Coster-Kronig

• independent of initial photoionisation

• can use fixed frequency X-ray tubes

• can also use electron gun (most common)

• AES is not very sensitive to environment

• mostly effective for surface elemental analysis

• but will always show up in PES spectra!

4/8/2010 18Chemistry 529 (2009-W2)

3.2.1 X-ray Photoelectron Spectroscopy (XPS)

1 2 3

12

k

b

E E E E

E E

h
e



The University of British Columbia
Department of Chemistry

X-ray Absorption Spectroscopy

• Comparison with PES

• lots of differences

• somewhat analogous but different…

• three distinct regions defined
in relation to ionisation energy:

• pre-edge

• edge jump

• post-edge (EXAFS)
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Regions of the XAS Spectrum

• The edge and pre-edge regions

• generally known as X-ray Absorption Near Edge Structure (XANES)

• region that occurs at or near the ionisation peak

• bound state transitions (not complete ionisations!)
• transitions handled in same way as Abs (except electron taken from core orbitals)

• yields information about electronic structure

• The post-edge region

• Extended X-ray Absorption Fine 
Structure (EXAFS)

• oscillatory structure after ionization peak

• results from scattering of photoelectrons
with the surrounding atoms

• yields geometric structure information
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Scattering of Photoelectrons

• photoemission from an isolated atom:

• ionisation edge jump

• decay as you get away from resonance

• photoemission from an atom within a 
specific arrangement of other atoms:

• additional regular oscillations

• scattering from other atoms

• interference effect on photoabsorption 
causes by neighbouring atoms:

• like diffraction

• use scattering theory to get geometric information
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Obtaining XAS data

• measure the absorption of X-rays at different photon energies

• Three basic ways to measure absorption:

• X-ray Transmission

• direct measurement like UV/Vis Abs experiments

• Total Fluorescence Yield (TFY)

• indirect measure – assumes

• Total Electron Yield (TEY)

• indirect measure - assumes
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X-ray Diffraction (XRD)

• X-ray scattering

• interaction with electrons

• large penetration depth

• external directional source

• requires long-range order

• sees all scatterers

• biggest problem

• phase of scattering

• use MAD/heavy atom replacement

EXAFS

• electron scattering

• interaction with electronic potential

• short penetration depth

• localized internal source

• sees short-range order

• only sees nearby scatterers

• biggest problem

• phase of scattering

• use references/ab initio calcs 
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Basic Theory of EXAFS

• oscillations are visualized as 

• k relates to photoelectron wavefunction

• known as wave vector

• easily convert E to k

• more data means more periods of oscillation

• getting higher k data is very useful (not always feasible)

e.g. k-range of 0-12 is good, but 0-15 is much better
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The EXAFS Equation

• semi-classical derivation of electron scattering for K-shell EXAFS:
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Contributions to EXAFS oscillations

• the EXAFS is effectively a sum of sinusoidal waves that are affected by

• the number of nearby scatterers (grouped by “geometric equivalence”)

• amplitude

• the identity of the scatterers

• phase

• amplitude

• the distance of the scatterers from the photoemitting atom

• period of the wave

• damping of amplitude

• the disorder (both static and dynamic) of the scatterers

• damping of amplitude
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Fourier Transformation – moving to “real” space

• the k-space data can be transformed into R-space through FT:

• each set of scatterers corresponds
to a peak at a certain “distance”…

• distance is NOT correct distance

• distance has to be correctly for phase 
shift that occurs due to scatterers

• phase shift is different for each type of atom!
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Multiple Scattering Pathways

• scattering is not necessarily a single event…

• can also have more complex scattering
paths

• to/from the same atoms

• connecting three or more atoms

• phase shifts for multiple scattering
paths is more complex

• depends on angle between scatterers

• 180° creates constructive interference

• 90° creates destructive interference
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General Approach to Fitting EXAFS Data
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• e.g. EXAFS deconvolution – Nature of Cu catalyst on ZnO surface

• heterogeneous catalytic system for 
methanol synthesis

CO + 2H2  CH3OH
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• e.g. EXAFS deconvolution – protocathechuate dioxygenase
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Issues to remember with EXAFS

• unique approach to get geometry in non-crystalline samples

• standard approach to data acquisition gives AVERAGE spectrum

• contributions from multiple sites can be difficult to deconvolute

• there are LOTS of parameters

• too many to give unique fit

• get chemically reasonable fit based on information from other sources

• use ab initio simulations to compare to data

• Sensitivity of data differs for different parameters:

• very sensitive to bond distances (Ri error within 0.02Å)

• very insensitive to coordination number (Ni is usually within +/- 1)
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X-ray Spectroscopic transitions

• ionisation edge - characterised by jump in 
intensity with slow decay

• transitions to bound states - discrete 
transitions to empty molecular orbitals

• also: transitions to Rydberg states

• final state is similar to ionisation but electron is 
not actually removed

• intense transitions will be electric dipole allowed such that:

• for K-edge (1s) XAS, we can expect

• edge jump for ionisation

• strong transitions to valence orbitals that contain np character

• Important: transitions rely on overlap between initial and final states

• 1s orbital is very localized - transitions will be localized on absorber atom…
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Metal K-edge XANES Analysis

• Simplest example: ZnII (3d10) Oh system

• Zn 3d orbitals are full

• lowest energy bound state transitions are 1s4p (4s are also empty but ss not ED 
allowed)

• look at atomic description of 1s4p bound state transition:

• 4p orbital is very diffuse – will have strong overlap with ligand orbitals…
• get distribution of 1s4p intensity to charge transfer (CT) peaks [remember PES!]

• ligand interactions must have t2g symmetry (GT allowed mixing with 4p orbitals in Oh)
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Zn K-edge XANES

• contributions to 1s4p are basically
at the 1s ionisation edge jump

• symmetry & nature of ligands
changes effect of CT states

• not particularly informative

• somewhat sensitive to symmetry

• differences are relatively small

4/8/2010 36Chemistry 529 (2009-W2)

3.2.2 X-ray Absorption Spectroscopy (XAS)

hO

hO

dT

dT

1 1 2 1 21 4 1 1 4f s p L s p L



The University of British Columbia
Department of Chemistry

Cu K-edge XANES Analysis

• CuI is basically the same as ZnII  3d10

• Cu 3d orbitals are full

• 1s 4p + CT contributions at/near the 1s edge jump

• 4p splitting and CT contributions provide reference
points for specific geometries / coordination numbers

• CuII K-edge XANES is more interesting…

• edge jump should be at different energy (DZeff)

• still have Cu 1s4p

• Cu 3d9 system – hole in 3d manifold, but...
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CuII K-edge XANES Analysis

• XANES spectra are very different

• edge jump is at higher energy in CuII since 
Cu 1s is at deeper binding energy

• if you look carefully, a very weak peak is
observable in the pre-edge region…
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Pre-edge features in Metal K-edge XAS Spectra

• peaks are generally very weak

• result from 1s3d transitions:

• possible final states can be decomposed into two terms

• e.g., in Oh symmetry

• therefore, can use dn+1 Tanabe Sugano diagrams

• but why can we see these transitions?

• 1s3d transitions are 
electric quadrupole allowed

• proven by angle-dependence
of peak intensities in CuII system 
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• e.g. analysis of pre-edge features for Oh FeII Complexes

• start with low-spin ferrous complexes

• look for spin-allowed one-electron transitions

4/8/2010 40Chemistry 529 (2009-W2)

3.2.2 X-ray Absorption Spectroscopy (XAS)

2
gE

all other LF states 

are from forbidden

two-electron transitions

no other 2E to mix with

so there should only be 

one pre-edge peak…



The University of British Columbia
Department of Chemistry

• what about high-spin ferrous complexes?

• more complex…
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Effect of lower symmetry and “3d-4p mixing”

• 1s3d are very weak because they are not ED allowed

• are there situations where this is not true?

• if final states include some 4p character (even just a little)

remember: by 2 orders of magnitude!

• how can we get 3d-4p mixing? (think back to Abs!)

• centrosymmetric (i.e., with inversion symmetry) cannot have 4p mixing

• but non-centrosymmetric can…
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• Effect of C4v distortions in ferrous complexes…
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Summary of Metal K-edge XANES

• energy of edge jump is related to oxidation state (Zeff)

• 1s3d transitions are very weak unless 4p mixing can occur

• can use intensity and splitting to investigate ligand field surrounding metal

• 1s4p transitions are very strong but masked by the edge jump (difficult to 
interpret)

• can be very useful in determining coordination number of metal complexes

• good complement to EXAFS!

• biggest problems

• intensity of pre-edge features is very weak (EQ mechanism)

• edge jump is huge compared to electronic transitions

• solution – use metal L-edges (M 2p ionisation) instead of K-edges…

• 2p3d transitions are electric dipole allowed

• edge jump is much weaker
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Metal L-edge XANES

• biggest problem – final state analysis is more complicated

• metal 2p hole is no longer benign

• must include both spin and orbital coupling to 3dn+1

• spin-orbit coupling!

• simplest case L-edges for CuII (3d9) complexes

• intensity of the L-edge peaks is directly
related to the amount of 3d character in
the singly-occupied orbital…
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K-edge XANES Spectra of non-metals

• for C, N, O – often called NEXAFS

• use similar approaches to understanding bound state transitions

• electric dipole allowed transitions dominate (sp)

• good, because valence orbitals are often np orbitals
• C,N,O,F  2p

• P,S,Cl  3p

• comparisons of free vs. bound ligands is often extremely informative

• shifts in valence orbital energies

• quantify charge donation into metal (e.g., p-backbonding)

• direct measure of covalency into metal

• gives alternative viewpoint to bonding

• can see electronic structure from different perspectives

• very useful since spectroscopy always perturbs system and each approach
looks at things in a slightly different way
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Summary of XANES Spectroscopy

• edge jump directly related to Zeff

• effective probe of empty valence orbitals

• electron delocalisation

• covalency of species

• energetic effect of bonding

• element specific

• look directly at a particular component of a complex system

• can often see system from several different perspectives
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