Find where can polynomial long division be useful in other problems

By using the polynomial long division, we can solve equations that involve more than one variable in a less complex way.

For example:

$$
\frac{x^{3}+y^{3}+z^{3}-3 x y z}{x+y+z}
$$

Just the equation itself already looks pretty intimidating, but with long division, we are able to figure out the quotient/solution and the remainder after the polynomial is divided by another polynomial.

First, we put it into long division form with $(x+y+z)$ on the left outside the division form and $\left(\left(x^{\wedge} 3\right)+\left(y^{\wedge} 3\right)+\left(z^{\wedge} 3\right)-(3 x y z)\right)$ on the inside of the division.

```
x+y+z\}\mp@subsup{\textrm{x}}{}{3}+\mp@subsup{\textrm{y}}{}{3}+\mp@subsup{\textrm{z}}{}{3}-3\textrm{Xyz
```

Next, we divide x from the divisor into $x^{\wedge} 3$, which is the leading term of the dividend, $\left(\left(x^{\wedge} 3\right)+\left(y^{\wedge} 3\right)+\left(z^{\wedge} 3\right)-(3 x y z)\right)$.

Third step, we'd divide y from the divisor into $y^{\wedge} 3$.

Step 4, divide z from the divisor into $z^{\wedge} 3$.

Step 5, rearrange to put the higher powers first

Step 6, you have two terms with $x^{\wedge} 2$ left. You can divide x into $-x^{\wedge} y-x^{\wedge} 2$.

Step 7, divide y into $-y^{\wedge} 2 z$ because you only have one term with $y^{\wedge} 2$ left.

Polynomial long division can also be helpful in trying to solve problems involving square roots. In order to solve:

$$
\frac{x^{2}-\sqrt{3}}{\sqrt{2} x^{2}+1}
$$

Divide the leading term $x^{\wedge} 2$ of the numerator polynomial by the learning term sqrt(2) $x^{\wedge} 2$ of the divisor:

$$
\sqrt{2} x^{2}+1\left\lceil\frac{\frac{1}{\sqrt{2}}}{x^{2}}-\sqrt{3}\right.
$$

Multiply "back": $\frac{1}{\sqrt{2}}\left(\sqrt{2} x^{2}+1\right)=x^{2}+\frac{1}{\sqrt{2}}$, and subtract
Next, you divide the leading term $x^{\wedge} 2$ of the numerator polynomial by the leading term $\operatorname{sqrt(2)} x^{\wedge} 2$ of the divisor:

$$
\sqrt{2} x^{2}+1\left\lceil\right.
$$

Therefore, you answer would be:

$$
\begin{aligned}
& \frac{x^{2}-\sqrt{3}}{\sqrt{2} x^{2}+1}=\frac{1}{\sqrt{2}}-\frac{\sqrt{3}+\frac{1}{\sqrt{2}}}{\sqrt{2} x^{2}+1} \\
& \frac{1}{\sqrt{2}} \text { being the divisor of the polynomial long division }
\end{aligned}
$$

$-\frac{\sqrt{3}+\frac{1}{\sqrt{2}}}{\sqrt{2} x^{2}+1}$
being the remainder of the polynomial long division.

