
EXTRA PROBLEMS IN GROUP THEORY

1) Show that a nonempty finite set with an associative binary operation satisfying the
cancellation laws is a group.

2) For any subgroup H of a group G, show that the intersection
⋂
g∈G

gHg−1 is the largest

normal subgroup contained in H.

Proof: Let

N =
⋂
g∈G

gHg−1

. Then N is clearly normal, and is contained in H. If N ′ is another normal subgroup
contained in H, then gng−1 ∈ N ′ for n′ ∈ N ′, g ∈ G. Hence gn′g−1 = h for h ∈ H and
hence n′ = g−1Hg for all g ∈ G, thus n′ ∈ N. Hence the theorem is proved.

3) Suppose G is a group that contains a subgroup H in its centre and has the property
that the quotient group G/H is cyclic. Then G is commutative.

4) Let p be the smallest prime dividing o(G) for a finite group G. Show that any subgroup
of index p is normal.
Proof: Let H ⊆ G be a subgroup of index p, so | G/H |= p. Consider the natural
homomorphism φ : G→ Bij(G/H), then p divides | G | and | Bij(G/H) |= p!. We showed
that the kernel of φ is the largest normal subgroup of G contained in H. Now use the
hypothesis that p is the smallest prime dividing | G | along with this fact and Lagrange’s
theorem to show that the kernel of φ is H and hence H is normal.

5) Let G be a group with a subgroup of index r. Prove :
i) If G is simple, then o(G) divides r!.
ii) If r = 2, 3 or 4, then G cannot be simple.

Proof: This is analogous to the applications I did in class today, using similar ideas as in
4).

6) Suppose that N and M are two normal subgroups of G and that N ∩M = e. Show that
for any n ∈ N, m ∈M , we have nm = mn.

7) Prove, by an example, that we can find three groups E ⊂ F ⊂ G where E is normal in
F , F is normal in G but E is not normal in G.
Proof Consider the dihedral group D8 (symmetries on a square). Take F to be the subgroup
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generated by the reflection and rotation by 180 degrees. This is normal in G, and in F
consider the subgroup E generated by the reflection. Check that this gives an example.

8) Prove that every finite group having more than two elements has a non-trivial automor-
phism. You may assume that not every element has order 2 in G.
Proof: If G is not abelian, then take any element g which is not in the centre, and conjugate
by g i.e. consider the automorphism cg : G−−− > G, cg(x) = gxg−1. This is a non-trivial
automorphism. If G is abelian, then g −−− > g−1 is a nontrivial automorphism as there
is a g in G with g2 6= e.

9) Let G be a finite group, T an automorphism of G with the property that Tx = x if and
only if x = e. Suppose further that T 2 = Id, the identity morphism. Prove that G must
be abelian.

10) If o(G) = pq where p and q are distict prime numbers and if G has a normal subgroup
of order p and a normal subgroup of order q, then G is cyclic.
Proof: Use the fact that the the subgroup N of order p and the subgroup M of order q are
cyclic.

Assignment solutions from Assignment 3:

If (ab)3 = a3b3 for any pair of elements a, b in G, and 3 does not divide o(G), show that G
is abelian.
Proof: Deduce first that (ba)2 = a2b2 and (ab)2 = a2b2. Using that (ab)2 = b2a2, then
deduce that a2b3 = b3a2. So every square commutes with every cube. Now consider
x 7→ x3 on G, this is a homomorphism by the given hypothesis and is injective. Fur-
ther as G is finite, this homomorphism is thus an isomorphism. So any g ∈ G is a
cube. Hence squares commute with all the elements in G. Now (ab)2 = b2a2, hence
(abab) = b(ba2) = b(a2b) = baab; hence ab = ba; here we are using the fact that any
element in G is a cube and that squares commute with all elements of G.

If aH 6= bH ⇐⇒ Ha 6= Hb, show that gHg1 ⊂ H.
Proof: We must show that the hypothesis implies that H is normal. We will use the
contrapositive of this hypothesis. For g ∈ G and every h ∈ H, we have gH = ghH; hence
Hg = Hgh. This implies on multiplying both sides of the second identity by g−1, we have
H = Hghg−1, hence ghg−1 ∈ H and H is normal.


