ASSIGNMENT 4

DUE: OCT 27, 2011

(I) (15 points)

a)Show that the order of the product of two disjoint cycles of lengths m and n is lcm(m, n) where lcm=least common multiple.
b) What is the order of the product of k-disjoint cycles of length $\left(m_{1}, \cdots, m_{k}\right)$.
c)How will you find the order of a given permutation in S_{n} ?
(2)(10 points)

Let G be a finite group of order $p q$, where $p>q$ are primes.
a)Show that G has a subgroup of order p and a subgroup of order q.
b) Given two primes p, q such that q divides $p-1$, show that there exists a non-abelian group of order $p q$.
(3)(10 points)
a) Given $\alpha=(1,2)(3,4)$ in S_{6} and $\beta=(5,6)(1,3)$, show that α and β are conjugate. Find an element of S_{6} that conjugates them.
b) Are $(1,2)(4,5)$ and $(2,1,4,5)$ conjugate in S_{6} ? Justify your answer.
(4)(15 points)
a) Can S_{4} have conjugacy classes of sizes $1,3,6,6,8$? What about $2,4,8,5,5$?
b) In S_{7}, express $(1,2)(1,2,3)(1,2)$ as a product of disjoint cycles and write its cycle type.
c) Prove that $(1,2, \cdots, n)^{-1}=(n, n-1, n-2, \cdots, 2,1)$.

