< Summary of Sequences and Series >

Discussed in class:
Definition A sequence is a function of the form $f: \mathbb{N} \rightarrow \mathbb{R}$.
(This is also denoted by $\left(a_{n}\right)_{n \in \mathbb{N}},\left(a_{n}\right)$ or $\left\{a_{n}\right\}$.)
Definition A sequence (a_{n}) converges to some real number L if, for all $\varepsilon>0$, there exists some $N \in \mathbb{N}$ such that, for all $n \in \mathbb{N}, n>N$ implies $\left|a_{n}-L\right|<\varepsilon$.
If $\left(a_{n}\right)$ does not converge, then $\left(a_{n}\right)$ is said to diverge.
$\left(a_{n}\right)$ is said to diverge to infinity, written as $\lim _{n \rightarrow \infty} a_{n}=\infty$ (or $-\infty$) if, for all $\varepsilon>0$, there exists some $N \in \mathbb{N}$ such that, for all $n \in \mathbb{N}, n>N$ implies $a_{n}>\varepsilon$.
Theorem For all $x, y \in \mathbb{R}$,

1. $|x y|=|x||y|$
2. $|x \pm y| \leq|x|+|y|$
(Triangular Inequality)
3. $|x| \leq y$ if and only if $-y \leq x \leq y$. ${ }^{\text {I }}$

Definition A sequence $\left(a_{n}\right)$ is bounded if there is some $R>0$ such that $\left|a_{n}\right|<R$ for all $n \in \mathbb{N}$.
Theorem If $\left(a_{n}\right)$ is a convergent sequence, then $\left(a_{n}\right)$ is bounded.
Theorem If $\lim _{n \rightarrow \infty} a_{n}=L$ and $L \neq 0$, then $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}=\frac{1}{L}$.
Theorem (The Cauchy Criterion for Convergence)
A sequence (a_{n}) converges if and only if, for all $\varepsilon>0$, there exists some $N \in \mathbb{N}$ such that, for all $m, n \in \mathbb{N}, m, n>N$ implies $\left|a_{m}-a_{n}\right|<\varepsilon$.
Definition A series $\left(s_{n}\right)$ is a sequence of the form $s_{n}=\sum_{i=1}^{n} a_{i}$, where $\left(a_{k}\right)$ is some sequence.
Definition Let $\left(a_{k}\right)$ be a sequence. If $\sum_{i=1}^{\infty}\left|a_{i}\right|$ converges, then $\sum_{i=1}^{\infty} a_{i}$ is said to be absolutely convergent.
Definition A geometric series is a series which takes the form of

$$
s_{\infty}=\sum_{i=1}^{\infty} a r^{i}
$$

where a and r are constants.
Theorem Let $\left(s_{n}\right)$ be a partial geometric series. If $|r|<1$, then

$$
s_{n}=\sum_{i=1}^{n} a r^{i}=a\left(\frac{1-r^{n+1}}{1-r}\right)
$$

Corollary If $|r|<1$, then

$$
s_{\infty}=\sum_{i=1}^{\infty} a r^{i}=a\left(\frac{1}{1-r}\right)
$$

Definition The Harmonic Series is the series

[^0]$$
\sum_{i=1}^{\infty} \frac{1}{i}
$$

Theorem The Harmonic Series does not converge.
Theorem (The Comparison Test)
Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be two sequences.

1. If $\left|a_{n}\right| \leq b_{n}$ for all $n \in \mathbb{N}$ and $\sum_{i=1}^{\infty} b_{i}$ converges, then $\sum_{i=1}^{\infty} a_{i}$ converges.
2. If $0 \leq a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$ and $\sum_{i=1}^{\infty} a_{i}$ diverges, then $\sum_{i=1}^{\infty} b_{i}$ diverges.

Theorem (The Ratio Test)
Let $\left(a_{n}\right)$ be a positive sequence.

1. If there is some θ such that $0<\theta<1$ and $\frac{a_{n+1}}{a_{n}} \leq \theta$ for all $n \in \mathbb{N}$, then $\sum_{i=1}^{\infty} a_{i}$ converges.
2. If there is some θ such that $\theta \geq 1$ and $\frac{a_{n+1}}{a_{n}} \geq \theta$ for all $n \in \mathbb{N}$, then $\sum_{i=1}^{\infty} a_{i}$ diverges.
Theorem (The Root Test)
Let $\left(a_{n}\right)$ be a positive sequence.
3. If there is some θ such that $0 \leq \theta<1$ and $\sqrt[n]{a_{n}} \leq \theta$ for all $n \in \mathbb{N}$, then $\sum_{i=1}^{\infty} a_{i}$ converges.
4. If there is some θ such that $\theta \geq 1$ and $\sqrt[n]{a_{n}} \geq \theta$ for all $n \in \mathbb{N}$, then $\sum_{i=1}^{\infty} a_{i}$ diverges.
Theorem (The Integral Test)
Let $f:[1, \infty) \rightarrow[0, \infty)$. The series $\sum_{i=1}^{\infty} f(i)$ converges if and only if $\int_{1}^{\infty} f(x) d x$ converges.
Definition A power series is a series of the form

$$
\sum_{n=0}^{\infty} a_{n} x^{n}
$$

for some sequence (a_{n}) and some constant real number x.
Theorem A power series converges if

1. $|x|<\lim \left|\frac{a_{n}}{a_{n+1}}\right|$, or
2. $|x|<\lim \left|\frac{1}{\sqrt[n]{a_{n}}}\right|$

Definition The radius of convergence of a power series is

$$
\lim \left|\frac{a_{n}}{a_{n+1}}\right| \quad \text { or } \quad \lim \left|\frac{1}{\sqrt[n]{a_{n}}}\right|
$$

Theorem (The Cauchy Product of Series)
If $\sum_{n=0}^{\infty} a_{n}$ and $\sum_{n=0}^{\infty} b_{0}$ are two absolutely convergent series, then

$$
\left(\sum_{n=0}^{\infty} a_{n}\right)\left(\sum_{n=0}^{\infty} b_{0}\right)=\sum_{n=0}^{\infty} \sum_{k=0}^{n} a_{k} b_{n-k}
$$

Discussed in the textbook:
Definition Let $x \in \mathbb{R}$. The ceiling of x, denoted by $\lceil x\rceil$, is the smallest integer that is greater than or equal to x.

Some well-known series and power series:
$\sum_{n=0}^{\infty} \frac{1}{n!}$
$=e$
$\sin (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$
$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=\ln (2)$
$\cos (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$
$\sum_{n=1}^{\infty} \frac{1}{n^{2}} \quad=\frac{\pi^{2}}{6}$
$\ln (1+x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{(n+1)!}$
$\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{2 n-1}=\frac{\pi}{4}$

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} \quad \text { for }|x|<1
$$

Important Topics:

- Zeno's Paradox, the Cantor Set and the Koch snowflake (in particular, know how the area and perimeter are derived)
- Proving convergence, divergence and divergence to infinity
- Working with inequalities and absolute values, as well as come up with functions that can be used for the purpose of bounding
- Conjecturing a limit for a sequence, series and power series
- Changing the order of addition in an infinite series can potentially result in contradictions
- Applying Cauchy's Criterion as well as the four convergence tests
- Finding the radius of convergence of a power series
- Know the derivation of some well-known constants by using power series

[^0]: ${ }^{1}$ A similar result holds for the strict inequality $<$.

