< Summary of Sequences and Series >							
Discussed in class:							
Definition	A sequence is a function of the form $f: \mathbb{N} \to \mathbb{R}$.						
	(This is also denoted by $(a_n)_{n \in \mathbb{N}}$, (a_n) or $\{a_n\}$.)						
<u>Definition</u>	A sequence (a_n) converges to some real number L if, for all $\varepsilon > 0$, there exists						
	some $N \in \mathbb{N}$ such that, for all $n \in \mathbb{N}$, $n > N$ implies $ a_n - L < \varepsilon$.						
	If (a_n) does not converge, then (a_n) is said to diverge.						
	(a_n) is said to diverge to infinity, written as $\lim_{n\to\infty} a_n = \infty$ (or $-\infty$) if, for all $\varepsilon > 0$, there exists some $N \in \mathbb{N}$ such that, for all $n \in \mathbb{N}$, $n > N$ implies $a_n > \varepsilon$.						
Theorem	For all $x, y \in \mathbb{R}$,						
	1. $ xy = x y $						
	2. $ x \pm y \le x + y $ (Triangular Inequality)						
	3. $ x \le y$ if and only if $-y \le x \le y$. ^I						
<u>Definition</u>	A sequence (a_n) is bounded if there is some $R > 0$ such that $ a_n < R$ for all $n \in \mathbb{N}$.						
Theorem	If (a_n) is a convergent sequence, then (a_n) is bounded.						
Theorem	If $\lim_{n\to\infty} a_n = L$ and $L \neq 0$, then $\lim_{n\to\infty} \frac{1}{a_n} = \frac{1}{L}$.						
Theorem	(The Cauchy Criterion for Convergence)						
	A sequence (a_n) converges if and only if, for all $\varepsilon > 0$, there exists some $N \in \mathbb{N}$ such that, for all $m, n \in \mathbb{N}$, $m, n > N$ implies $ a_m - a_n < \varepsilon$.						
Definition	A series (s_n) is a sequence of the form $s_n = \sum_{i=1}^n a_i$, where (a_k) is some sequence.						
Definition	Let (a_k) be a sequence. If $\sum_{i=1}^{\infty} a_i $ converges, then $\sum_{i=1}^{\infty} a_i$ is said to be absolutely convergent.						
Definition	A geometric series is a series which takes the form of						
	$\sum_{i=1}^{\infty}$ i						
	$s_{\infty} = \sum_{i=1}^{n} ar^{i}$						
	where a and r are constants.						
Theorem	Let (s_n) be a partial geometric series. If $ r < 1$, then						
	n \dots \dots						
	$s_n = \sum_{i=1}^{n} ar^i = a\left(\frac{1-r^{n+1}}{1-r}\right)$						
<u>Corollary</u>	If $ r < 1$, then						

$$s_{\infty} = \sum_{i=1}^{\infty} ar^i = a\left(\frac{1}{1-r}\right)$$

<u>Definition</u> The Harmonic Series is the series

^I A similar result holds for the strict inequality <.

$\sum_{i=1}^{1} \frac{1}{i}$ Theorem The Harmonic Series does not converge. Theorem (The Comparison Test) Let (a_n) and (b_n) be two sequences. 1. If $ a_n \le b_n$ for all $n \in \mathbb{N}$ and $\sum_{i=1}^{\infty} b_i$ converges, then $\sum_{i=1}^{\infty} a_i$ converges. 2. If $0 \le a_n \le b_n$ for all $n \in \mathbb{N}$ and $\sum_{i=1}^{\infty} a_i$ diverges, then $\sum_{i=1}^{\infty} b_i$ diverges. Theorem (The Ratio Test) Let (a_n) be a positive sequence. 1. If there is some θ such that $0 < \theta < 1$ and $\frac{a_{n+1}}{a_n} \le \theta$ for all $n \in \mathbb{N}$, then $\sum_{i=1}^{\infty} a_i$ diverges. 2. If there is some θ such that $\theta \ge 1$ and $\frac{a_{n+1}}{a_n} \ge \theta$ for all $n \in \mathbb{N}$, then $\sum_{i=1}^{\infty} a_i$ diverges. Theorem (The Root Test) Let (a_n) be a positive sequence. 1. If there is some θ such that $0 \le \theta < 1$ and $\frac{n}{\sqrt{a_n}} \le \theta$ for all $n \in \mathbb{N}$, then $\sum_{i=1}^{\infty} a_i$ diverges. Theorem (The Root Test) Let (a_n) be a positive sequence. 1. If there is some θ such that $0 \le \theta < 1$ and $\sqrt[n]{a_n} \le \theta$ for all $n \in \mathbb{N}$, then $\sum_{i=1}^{\infty} a_i$ diverges. 2. If there is some θ such that $\theta \ge 1$ and $\sqrt[n]{a_n} \ge \theta$ for all $n \in \mathbb{N}$, then $\sum_{i=1}^{\infty} a_i$ diverges. 2. If there is some θ such that $\theta \ge 1$ and $\sqrt[n]{a_n} \ge \theta$ for all $n \in \mathbb{N}$, then $\sum_{i=1}^{\infty} a_i$ diverges.						
$\begin{array}{ll} \hline \textbf{Theorem} & (\text{The Comparison Test}) \\ \text{Let } (a_n) \text{ and } (b_n) \text{ be two sequences.} \\ 1. \text{ If } a_n \leq b_n \text{ for all } n \in \mathbb{N} \text{ and } \sum_{i=1}^{\infty} b_i \text{ converges, then } \sum_{i=1}^{\infty} a_i \text{ converges.} \\ 2. \text{ If } 0 \leq a_n \leq b_n \text{ for all } n \in \mathbb{N} \text{ and } \sum_{i=1}^{\infty} a_i \text{ diverges, then } \sum_{i=1}^{\infty} b_i \text{ diverges.} \\ \hline \textbf{Theorem} & (\text{The Ratio Test}) \\ \text{Let } (a_n) \text{ be a positive sequence.} \\ 1. \text{ If there is some } \theta \text{ such that } 0 < \theta < 1 \text{ and } \frac{a_{n+1}}{a_n} \leq \theta \text{ for all } n \in \mathbb{N}, \text{ then } \sum_{i=1}^{\infty} a_i \text{ converges.} \\ 2. \text{ If there is some } \theta \text{ such that } \theta \geq 1 \text{ and } \frac{a_{n+1}}{a_n} \geq \theta \text{ for all } n \in \mathbb{N}, \text{ then } \sum_{i=1}^{\infty} a_i \text{ diverges.} \\ \hline \textbf{Theorem} & (\text{The Root Test}) \\ \text{Let } (a_n) \text{ be a positive sequence.} \\ 1. \text{ If there is some } \theta \text{ such that } 0 \leq \theta < 1 \text{ and } \frac{n}{\sqrt{a_n}} \leq \theta \text{ for all } n \in \mathbb{N}, \text{ then } \sum_{i=1}^{\infty} a_i \text{ converges.} \\ \hline \textbf{Let } (a_n) \text{ be a positive sequence.} \\ 1. \text{ If there is some } \theta \text{ such that } 0 \leq \theta < 1 \text{ and } \frac{n}{\sqrt{a_n}} \leq \theta \text{ for all } n \in \mathbb{N}, \text{ then } \sum_{i=1}^{\infty} a_i \text{ converges.} \\ 2. \text{ If there is some } \theta \text{ such that } 0 \leq \theta < 1 \text{ and } \frac{n}{\sqrt{a_n}} \leq \theta \text{ for all } n \in \mathbb{N}, \text{ then } \sum_{i=1}^{\infty} a_i \text{ converges.} \\ 2. \text{ If there is some } \theta \text{ such that } \theta \geq 1 \text{ and } \frac{n}{\sqrt{a_n}} \geq \theta \text{ for all } n \in \mathbb{N}, \text{ then } \sum_{i=1}^{\infty} a_i \text{ converges.} \\ 2. \text{ If there is some } \theta \text{ such that } \theta \geq 1 \text{ and } \frac{n}{\sqrt{a_n}} \geq \theta \text{ for all } n \in \mathbb{N}, \text{ then } \sum_{i=1}^{\infty} a_i \text{ converges.} \\ \end{array}$						
$\begin{array}{l} \text{Let } (a_n) \text{ and } (b_n) \text{ be two sequences.} \\ 1. \text{ If } a_n \leq b_n \text{ for all } n \in \mathbb{N} \text{ and } \sum_{i=1}^{\infty} b_i \text{ converges, then } \sum_{i=1}^{\infty} a_i \text{ converges.} \\ 2. \text{ If } 0 \leq a_n \leq b_n \text{ for all } n \in \mathbb{N} \text{ and } \sum_{i=1}^{\infty} a_i \text{ diverges, then } \sum_{i=1}^{\infty} b_i \text{ diverges.} \\ \hline \textbf{Theorem} & (\text{The Ratio Test}) \\ \text{Let } (a_n) \text{ be a positive sequence.} \\ 1. \text{ If there is some } \theta \text{ such that } 0 < \theta < 1 \text{ and } \frac{a_{n+1}}{a_n} \leq \theta \text{ for all } n \in \mathbb{N}, \text{ then } \sum_{i=1}^{\infty} a_i \text{ converges.} \\ 2. \text{ If there is some } \theta \text{ such that } \theta \geq 1 \text{ and } \frac{a_{n+1}}{a_n} \geq \theta \text{ for all } n \in \mathbb{N}, \text{ then } \sum_{i=1}^{\infty} a_i \text{ diverges.} \\ \hline \textbf{Theorem} & (\text{The Root Test}) \\ \text{Let } (a_n) \text{ be a positive sequence.} \\ 1. \text{ If there is some } \theta \text{ such that } 0 \leq \theta < 1 \text{ and } \frac{n}{\sqrt{a_n}} \leq \theta \text{ for all } n \in \mathbb{N}, \text{ then } \sum_{i=1}^{\infty} a_i \text{ diverges.} \\ \hline \textbf{Theorem} & (\text{The Root Test}) \\ \text{Let } (a_n) \text{ be a positive sequence.} \\ 1. \text{ If there is some } \theta \text{ such that } 0 \leq \theta < 1 \text{ and } \frac{n}{\sqrt{a_n}} \leq \theta \text{ for all } n \in \mathbb{N}, \text{ then } \sum_{i=1}^{\infty} a_i \text{ converges.} \\ 2. \text{ If there is some } \theta \text{ such that } 0 \leq \theta < 1 \text{ and } \sqrt[n]{a_n} \geq \theta \text{ for all } n \in \mathbb{N}, \text{ then } \sum_{i=1}^{\infty} a_i \text{ converges.} \\ 2. \text{ If there is some } \theta \text{ such that } \theta \geq 1 \text{ and } \sqrt[n]{a_n} \geq \theta \text{ for all } n \in \mathbb{N}, \text{ then } \sum_{i=1}^{\infty} a_i \text{ converges.} \\ 2. \text{ If there is some } \theta \text{ such that } \theta \geq 1 \text{ and } \sqrt[n]{a_n} \geq \theta \text{ for all } n \in \mathbb{N}, \text{ then } \sum_{i=1}^{\infty} a_i \text{ converges.} \\ 2. \text{ If there is some } \theta \text{ such that } \theta \geq 1 \text{ and } \sqrt[n]{a_n} \geq \theta \text{ for all } n \in \mathbb{N}, \text{ then } \sum_{i=1}^{\infty} a_i \text{ converges.} \\ 1. \text{ If there is some } \theta \text{ such that } \theta \geq 1 \text{ and } \sqrt[n]{a_n} \geq \theta \text{ for all } n \in \mathbb{N}, \text{ then } \sum_{i=1}^{\infty} a_i \text{ and } \sum_{i=1}^{\infty} a_i$	The Harmonic Series does not converge.					
 1. If a_n ≤ b_n for all n ∈ N and Σ_{i=1}[∞] b_i converges, then Σ_{i=1}[∞] a_i converges. 2. If 0 ≤ a_n ≤ b_n for all n ∈ N and Σ_{i=1}[∞] a_i diverges, then Σ_{i=1}[∞] b_i diverges. Theorem (The Ratio Test) Let (a_n) be a positive sequence. If there is some θ such that 0 < θ < 1 and a_{n+1}/a_n ≤ θ for all n ∈ N, then Σ_{i=1}[∞] a_i converges. If there is some θ such that θ ≥ 1 and a_{n+1}/a_n ≥ θ for all n ∈ N, then Σ_{i=1}[∞] a_i diverges. Theorem (The Root Test) Let (a _n) be a positive sequence. If there is some θ such that 0 ≤ θ < 1 and n ∈ N, then Σ_{i=1}[∞] a_i diverges. Theorem (The Root Test) Let (a _n) be a positive sequence. If there is some θ such that 0 ≤ θ < 1 and n √a_n ≤ θ for all n ∈ N, then Σ_{i=1}[∞] a_i diverges. 						
 2. If 0 ≤ a_n ≤ b_n for all n ∈ N and ∑_{i=1}[∞] a_i diverges, then ∑_{i=1}[∞] b_i diverges. Theorem (The Ratio Test) Let (a_n) be a positive sequence. If there is some θ such that 0 < θ < 1 and a_{n+1}/a_n ≤ θ for all n ∈ N, then ∑_{i=1}[∞] a_i converges. If there is some θ such that θ ≥ 1 and a_{n+1}/a_n ≥ θ for all n ∈ N, then ∑_{i=1}[∞] a_i diverges. Theorem (The Root Test) Let (a_n) be a positive sequence. I. If there is some θ such that 0 ≤ θ < 1 and n√a_n ≤ θ for all n ∈ N, then ∑_{i=1}[∞] a_i diverges. 						
$\begin{array}{ll} \hline \textbf{Theorem} & (\text{The Ratio Test}) \\ \text{Let } (a_n) \text{ be a positive sequence.} \\ & 1. \text{ If there is some } \theta \text{ such that } 0 < \theta < 1 \text{ and } \frac{a_{n+1}}{a_n} \leq \theta \text{ for all } n \in \mathbb{N}, \text{ then } \\ & \sum_{i=1}^{\infty} a_i \text{ converges.} \\ & 2. \text{ If there is some } \theta \text{ such that } \theta \geq 1 \text{ and } \frac{a_{n+1}}{a_n} \geq \theta \text{ for all } n \in \mathbb{N}, \text{ then } \sum_{i=1}^{\infty} a_i \\ & \text{ diverges.} \\ \hline \textbf{Theorem} & (\text{The Root Test}) \\ \text{Let } (a_n) \text{ be a positive sequence.} \\ & 1. \text{ If there is some } \theta \text{ such that } 0 \leq \theta < 1 \text{ and } \sqrt[n]{a_n} \leq \theta \text{ for all } n \in \mathbb{N}, \text{ then } \\ & \sum_{i=1}^{\infty} a_i \text{ converges.} \\ & 2. \text{ If there is some } \theta \text{ such that } \theta \geq 1 \text{ and } \sqrt[n]{a_n} \leq \theta \text{ for all } n \in \mathbb{N}, \text{ then } \\ & \sum_{i=1}^{\infty} a_i \text{ converges.} \\ & 2. \text{ If there is some } \theta \text{ such that } \theta \geq 1 \text{ and } \sqrt[n]{a_n} \geq \theta \text{ for all } n \in \mathbb{N}, \text{ then } \\ & \sum_{i=1}^{\infty} a_i \text{ converges.} \\ & 2. \text{ If there is some } \theta \text{ such that } \theta \geq 1 \text{ and } \sqrt[n]{a_n} \geq \theta \text{ for all } n \in \mathbb{N}, \text{ then } \\ & \sum_{i=1}^{\infty} a_i \text{ converges.} \\ & 2. \text{ If there is some } \theta \text{ such that } \theta \geq 1 \text{ and } \sqrt[n]{a_n} \geq \theta \text{ for all } n \in \mathbb{N}, \text{ then } \\ & \sum_{i=1}^{\infty} a_i \text{ converges.} \\ & 3 \text{ there is some } \theta \text{ such that } \theta \geq 1 \text{ and } \sqrt[n]{a_n} \geq \theta \text{ for all } n \in \mathbb{N}, \text{ then } \\ & \sum_{i=1}^{\infty} a_i \text{ for all } n \in \mathbb{N}, \text{ then } \\ & \sum_{i=1}^{\infty} a_i \text{ for all } n \in \mathbb{N}, \text{ then } \\ & \sum_{i=1}^{\infty} a_i \text{ for all } n \in \mathbb{N}, \text{ then } \\ & \sum_{i=1}^{\infty} a_i \text{ for all } n \in \mathbb{N}, \text{ then } \\ & \sum_{i=1}^{\infty} a_i \text{ for all } n \in \mathbb{N}, \text{ then } \\ & \sum_{i=1}^{\infty} a_i \text{ for all } n \in \mathbb{N}, \text{ then } \\ & \sum_{i=1}^{\infty} a_i \text{ for all } n \in \mathbb{N}, \text{ then } \\ & \sum_{i=1}^{\infty} a_i \text{ for all } n \in \mathbb{N}, \text{ then } \\ & \sum_{i=1}^{\infty} a_i \text{ for all } n \in \mathbb{N}, \text{ for all }$						
 Let (a_n) be a positive sequence. 1. If there is some θ such that 0 < θ < 1 and a_{n+1}/a_n ≤ θ for all n ∈ N, then Σ_{i=1}[∞] a_i converges. 2. If there is some θ such that θ ≥ 1 and a_{n+1}/a_n ≥ θ for all n ∈ N, then Σ_{i=1}[∞] a_i diverges. Theorem (The Root Test) Let (a_n) be a positive sequence. 1. If there is some θ such that 0 ≤ θ < 1 and ⁿ√a_n ≤ θ for all n ∈ N, then Σ_{i=1}[∞] a_i 2. If there is some θ such that 0 ≤ θ < 1 and ⁿ√a_n ≤ θ for all n ∈ N, then Σ_{i=1}[∞] a_i 	2. If $0 \le a_n \le b_n$ for all $n \in \mathbb{N}$ and $\sum_{i=1}^{\infty} a_i$ diverges, then $\sum_{i=1}^{\infty} b_i$ diverges.					
 If there is some θ such that 0 < θ < 1 and an+1/an ≤ θ for all n ∈ N, then Σ_{i=1}[∞] a_i converges. If there is some θ such that θ ≥ 1 and an+1/an ≥ θ for all n ∈ N, then Σ_{i=1}[∞] a_i diverges. Theorem (The Root Test) Let (a_n) be a positive sequence. If there is some θ such that 0 ≤ θ < 1 and ⁿ√an ≤ θ for all n ∈ N, then Σ_{i=1}[∞] a_i If there is some θ such that 0 ≤ 1 and ⁿ√an ≤ θ for all n ∈ N, then Σ_{i=1}[∞] a_i 						
 ∑_{i=1}[∞] a_i converges. 2. If there is some θ such that θ ≥ 1 and a_{n+1}/a_n ≥ θ for all n ∈ N, then ∑_{i=1}[∞] a_i diverges. Theorem (The Root Test) Let (a_n) be a positive sequence. If there is some θ such that 0 ≤ θ < 1 and ⁿ√a_n ≤ θ for all n ∈ N, then ∑_{i=1}[∞] a_i converges. If there is some θ such that θ ≥ 1 and ⁿ√a_n ≥ θ for all n ∈ N, then ∑_{i=1}[∞] a_i 						
 2. If there is some θ such that θ ≥ 1 and an+1/an ≥ θ for all n ∈ N, then Σ_{i=1}[∞] a_i diverges. Theorem (The Root Test) Let (a_n) be a positive sequence. If there is some θ such that 0 ≤ θ < 1 and ⁿ√a_n ≤ θ for all n ∈ N, then Σ_{i=1}[∞] a_i converges. If there is some θ such that θ ≥ 1 and ⁿ√a_n ≥ θ for all n ∈ N, then Σ_{i=1}[∞] a_i 						
diverges. <u>Theorem</u> (The Root Test) Let (a_n) be a positive sequence. 1. If there is some θ such that $0 \le \theta < 1$ and $\sqrt[n]{a_n} \le \theta$ for all $n \in \mathbb{N}$, then $\sum_{i=1}^{\infty} a_i$ converges. 2. If there is some θ such that $\theta \ge 1$ and $\sqrt[n]{a_n} \ge \theta$ for all $n \in \mathbb{N}$, then $\sum_{i=1}^{\infty} a_i$						
diverges. <u>Theorem</u> (The Root Test) Let (a_n) be a positive sequence. 1. If there is some θ such that $0 \le \theta < 1$ and $\sqrt[n]{a_n} \le \theta$ for all $n \in \mathbb{N}$, then $\sum_{i=1}^{\infty} a_i$ converges. 2. If there is some θ such that $\theta \ge 1$ and $\sqrt[n]{a_n} \ge \theta$ for all $n \in \mathbb{N}$, then $\sum_{i=1}^{\infty} a_i$						
 Let (a_n) be a positive sequence. 1. If there is some θ such that 0 ≤ θ < 1 and ⁿ√a_n ≤ θ for all n ∈ N, then Σ_{i=1}[∞] a_i converges. 2. If there is some θ such that θ ≥ 1 and ⁿ√a_n ≥ θ for all n ∈ N, then Σ_{i=1}[∞] a_i 						
 If there is some θ such that 0 ≤ θ < 1 and ⁿ√a_n ≤ θ for all n ∈ N, then ∑_{i=1}[∞] a_i converges. If there is some θ such that θ ≥ 1 and ⁿ√a_n ≥ θ for all n ∈ N, then ∑_{i=1}[∞] a_i 						
$\sum_{i=1}^{\infty} a_i$ converges. 2. If there is some θ such that $\theta \ge 1$ and $\sqrt[n]{a_n} \ge \theta$ for all $n \in \mathbb{N}$, then $\sum_{i=1}^{\infty} a_i$						
$\sum_{i=1}^{\infty} a_i$ converges. 2. If there is some θ such that $\theta \ge 1$ and $\sqrt[n]{a_n} \ge \theta$ for all $n \in \mathbb{N}$, then $\sum_{i=1}^{\infty} a_i$						
diverges.						
Theorem (The Integral Test)						
Let $f: [1, \infty) \to [0, \infty)$. The series $\sum_{i=1}^{\infty} f(i)$ converges if and only if $\int_{1}^{\infty} f(x) dx$	С					
converges.						
Definition A power series is a series of the form						
$\sum_{n=1}^{\infty} a_n x^n$						
$\sum_{n=0}^{n \times n} a_n \times b_n$						
for some sequence (a_n) and some constant real number x.						
Theorem A power series converges if						
$1. x < \lim \left \frac{a_n}{a_{n+1}} \right , \text{ or }$						
2. $ x < \lim \left \frac{1}{\frac{n}{a_n}} \right $						
Definition The radius of convergence of a power series is						
$\lim \left \frac{a_n}{a_{n+1}} \right \text{or} \lim \left \frac{1}{\frac{n}{a_n}} \right $						
Theorem (The Cauchy Product of Series)						
If $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_0$ are two absolutely convergent series, then						

$$\left(\sum_{n=0}^{\infty} a_n\right) \left(\sum_{n=0}^{\infty} b_0\right) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k}$$

Discussed in the textbook:

<u>Definition</u> Let $x \in \mathbb{R}$. The ceiling of x, denoted by [x], is the smallest integer that is greater than or equal to x.

Some well-known series and power series:

$\sum_{n=0}^{\infty} \frac{1}{n!}$	= <i>e</i>	$\sin(x)$	=	$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$
$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$	$= \ln(2)$	$\cos(x)$	=	$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$
$\sum_{n=1}^{\infty} \frac{1}{n^2}$	$=\frac{\pi^2}{6}$	$\ln\left(1+x\right)$	=	$\sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{(n+1)!}$
$\sum_{n=0}^{\infty} (-1)^n \frac{1}{2n-1}$	$= \frac{\pi}{4}$	$\frac{1}{1-x}$		$\sum_{n=0}^{\infty} x^n \qquad \text{for } x < 1$

Important Topics:

- Zeno's Paradox, the Cantor Set and the Koch snowflake (in particular, know how the area and perimeter are derived)
- Proving convergence, divergence and divergence to infinity
- Working with inequalities and absolute values, as well as come up with functions that can be used for the purpose of bounding
- Conjecturing a limit for a sequence, series and power series
- Changing the order of addition in an infinite series can potentially result in contradictions
- Applying Cauchy's Criterion as well as the four convergence tests
- Finding the radius of convergence of a power series
- Know the derivation of some well-known constants by using power series