MATH 600D: ASSIGNMENT 2

DUE: OCT 10, 2011

- (1) Let R be a commutative ring. A sequence $\sigma = (r_1, \dots, r_n)$ of elements of R is said to be a unimodular row if there exist elements $s_1, \dots, s_n \in R$ such that $1 = r_1s_1 + \dots + r_ns_n$. Prove that (a) and (b) are equivalent and verify (c) :
 - (a) σ is a unimodular row.
 - (b) $R^n \simeq P \oplus R$, where $P = \text{Ker } \sigma$, P is projective and

$$\sigma: R^n \to R$$
$$(s_1, \cdots, s_n) \to \sum_{i=1}^n r_i s_i$$

- (c) There exists an $(n \times n)$ matrix over R, which is invertible and whose first row is $\sigma = (r_1, \dots, r_n)$ iff the projective R-module P defined in (b) is free.
- (2) Show that every unimodular row of length 2 may be completed to an invertible (2×2) matrix. Deduce that every stably free projective *R*-module of rank 1 is free (You may assume that *R* is a domain to define rank).
- (3) Let R be a commutative ring. Show that the followings are equivalent for every R-module L:
 - (a) There is an *R*-module *M* such that $L \otimes_R M \simeq R$
 - (b) L is an algebraic line bundle.
 - (c) L is a finitely generated R-module and $L_{\mathcal{P}} \simeq R_{\mathcal{P}}$ for every prime ideal \mathcal{P} of R.
- (4) Let R be a ring and I a two sided ideal of R. Define

 $D_R(I) = \{(x, y) \in R \times R \mid x - y \in I\}$

Let π_1 be the natural first projection of $D_R(I) \to R$. Show that there is a split exact sequence

$$0 \to I \to D_R(I) \xrightarrow{\pi_1} R \to 0$$

Define

$$K_0(R, I) = \operatorname{Ker}(\pi_1)_* : \{K_0(D_R(I)) \to K_0(R)\}$$

Show that there is an exact sequence

$$0 \rightarrow K_0(R, I) \rightarrow K_0(R) \rightarrow K_0(R/I)$$

where the last map is induced by the natural surjection $R \to R/I$.