ASSIGNMENT 1

DUE: SEPTEMBER 22, 2011

1 (10 points)

(a) Let $A=\{1,2, \ldots, 8\}$ Define a relation R on A by $(a, b) \in R$ if and only if $3 \mid a-b$ for all $a, b \in A$. Show that R is an equivalence relation. Find the equivalence classes [1], [2], [3], [4].
(b) In \mathbb{Z}_{6}, which of the following equivalence classes are equal? [-1], , 2], [8], [5], , [-2], , [11], ,23].

2 (10 points)
Let $f: A \rightarrow B, g: B \rightarrow C$ be functions, recall that for each $A^{\prime} \subseteq A, B^{\prime} \subseteq B$, we define

$$
f\left(A^{\prime}\right)=\left\{f(a): a \in A^{\prime}\right\} \subseteq B, f^{-1}\left(B^{\prime}\right)=\left\{a: f(a) \in B^{\prime}\right\} \subseteq A
$$

(a) For each $X, Y \subseteq B$ and $Z, W \subseteq A$, Show that

$$
\begin{aligned}
f^{-1}(X \cup Y) & =f^{-1}(X) \cup f^{-1}(Y) \\
f^{-1}(X \cap Y) & =f^{-1}(X) \cap f^{-1}(Y) \\
f(Z \cup W) & =f(Z) \cup f(W) \\
f(Z \cap W) & \subseteq f(Z) \cap f(W)
\end{aligned}
$$

(b) Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ and $Z, W \subseteq \mathbb{R}$ such that $f(Z \cap W) \neq f(Z) \cap$ $f(W)$.
(c) Find an example of a map f, g such that $g \circ f$ is onto but f is not onto. Find an example of a map f, g such that $g \circ f$ is $1-1$ but g is not $1-1$.
3 (10 points)
(a) Let $G=\mathbb{Q} \backslash\{-1\}$. Show that $(G, *)$ is a group where $a * b=a+b+a b$. (Don't forget to check that $*$ is a binary operation on G i.e. $a \in G, b \in G \Rightarrow a * b \in G$.)
(b) Consider $(\mathbb{Z} / 12, *)$ where $[a] *[b]=[a b]$. Is this a group?
(c) Consider the group of 2×2 matrices over \mathbb{R} of determinant 1 . Is it a subgroup of the group of 2×2 matrices over \mathbb{R} of nonzero determinant ?

