

BEST 402 Industrial Ecology – Professor Qingshi Tu

Interpreting Life Cycle Assessment (LCA) Results Case Study: Fast Pyrolysis of Forest Biomass

Invited Lecture:

Paul Stuart

Department of Chemical Engineering – Polytechnique Montréal

"Aggregated Thoughts about LCA", based primarily on (1) the course GCH1220 on Life Cycle Design, (2) PhD thesis results of Dr Stéphanie Jean, and (3) consulting activities

6 October 2022

- To present "one perspective" on the strengths and weaknesses of life cycle assessment (LCA)
- To give some insight into the key methodological issues that need to be addressed when using LCA for biorefinery design decision-making
- To introduce MCDM panels as an important design decisionmaking tool, and the context of environmental criteria
- To concretize the complexity of using LCA metrics for design decision-making: interpreting LCA results through presentation of a case study

BEST 402 INDUSTRIAL ECOLOGY: INTERPRETING LCA RESULTS LECTURE OUTLINE

- A very very brief history of LCA from the perspective of design decision-making
- Some methodological questions related to LCA and design decision-making that we have addressed in our research program over the years
- Design decision-making, MCDM panels, and LCA-based environmental criteria
- A case study, and interpreting LCA results for design decision-making
- Ongoing research activities and take-home messages

BEST 402 INDUSTRIAL ECOLOGY: INTERPRETING LCA RESULTS LECTURE OUTLINE

A very very brief history of LCA from the perspective of design decision-making

- Some methodological questions related to LCA and design decision-making that we have addressed in our research program over the years
- Design decision-making, MCDM panels, and LCA-based environmental criteria
- A case study, and interpreting LCA results for design decision-making
- Ongoing research activities and take-home messages

Almost all our projects are done in close collaboration with industry partners

We use the design "toolbox" in our research, contributing (1) methodologically and through (2) outcomes

□ The basis of "life cycle design", is "life cycle thinking"

- "Life Cycle Thinking (LCT) is about going beyond the traditional focus on production site and manufacturing processes, to include environmental, social and economic impacts of a product over its entire life cycle" (UNEP Life Cycle Initiative 2022)
- Life-Cycle Design (LCD) is the environmentally sound design of products based on the whole lifecycle starting from exploitation and processing of raw materials,, to use and returning of materials over its entire life cycle

BEST 402 INDUSTRIAL ECOLOGY: INTERPRETING LCA RESULTS A VERY VERY BRIEF HISTORY OF LCA...

PEER-REVIEWED LIFE-CYCLE ASSESSMENT

Life-cycle thinking in the pulp and paper industry, Part I: Current practices and most promising avenues

CAROLINE GAUDREAULT, RÉJEAN SAMSON, AND PAUL R. STUART

PEER-REVIEWED LIFE-CYCLE ASSESSMENT

Life-cycle thinking in the pulp and paper industry, part 2: LCA studies and opportunities for development

CAROLINE GAUDREAULT, RÉJEAN SAMSON, AND PAUL R. STUART

BEST 402 INDUSTRIAL ECOLOGY: INTERPRETING LCA RESULTS A VERY VERY BRIEF HISTORY OF LCA...

BEST 402 INDUSTRIAL ECOLOGY: INTERPRETING LCA RESULTS A VERY VERY BRIEF HISTORY OF LCA...

BEST 402 INDUSTRIAL ECOLOGY: INTERPRETING LCA RESULTS LECTURE OUTLINE

- A very very brief history of LCA from the perspective of design decision-making
- Some methodological questions related to LCA and design decision-making that we have addressed in our research program over the years
- Design decision-making, MCDM panels, and LCA-based environmental criteria
- A case study, and interpreting LCA results for design decision-making
- Ongoing research activities and take-home messages

- 11
 - How can we use LCA to compare the environmental impact of new biorefinery products with those from traditional product value chains?
 - How do we systematically adapt LCA methodology to make comparisons considering the **product portfolio**?
 - How should trade-offs be best considered between different criteria including environmental criteria?
 - How should complex LCA-based environmental impacts be reflected at the biorefinery decision-making level?

In each case study we address using LCA, how can we interpret LCA results to assist with decision-making?

BEST 402 INDUSTRIAL ECOLOGY: INTERPRETING LCA RESULTS SOME OF OUR LCA-RELATED WORK

Editorial

The Potential of Triticale Evaluated by the Power of Engineering and

Business Analytics

Modeling and Analysis

Life cycle assessment of an integrated forest biorefinery: hot water extraction process case study Int J Life Cycle Assess (2010) 15:198-211 DOI 10.1007/s11367-009-0125-1

PULP AND PAPER

Energy decision making in a pulp and paper mill: selection of LCA system boundary

Caroline Gaudreault · Réjean Samson · Paul René Stuart

LCA for the engineering analysis of the forest biorefinery

CAROLINE GAUDREAULT¹, RÉJEAN SAMSON², VIRGINIE CHAMBOST³, AND PAUL STUART⁴

BEST 402 INDUSTRIAL ECOLOGY: INTERPRETING LCA RESULTS LECTURE OUTLINE

- A very very brief history of LCA from the perspective of design decision-making
- Some methodological questions related to LCA and design decision-making that we have addressed in our research program over the years
- Design decision-making, MCDM panels, and LCA-based environmental criteria
- A case study, and interpreting LCA results for design decision-making
- Ongoing research activities and take-home messages

BEST 402 INDUSTRIAL ECOLOGY: INTERPRETING LCA RESULTS MULTI-CRITERIA DECISION-MAKING (MCDM) PANELS: CONTEXT

EnVertis

BEST 402 INDUSTRIAL ECOLOGY: INTERPRETING LCA RESULTS MCDM PANELS: EARLY-STAGE DESIGN DECISION CRITERIA

BEST 402 INDUSTRIAL ECOLOGY: INTERPRETING LCA RESULTS

- MCDM criteria should reflect the **diverse values** of the panel participants
- The definition of a "necessary and sufficient" set of criteria is initially identified considering company values
- □ The 6-8 criteria retained for the panel should be **appropriate and representative**
 - Appropriate: Taken as a whole, the retained set of criteria represents "important" factors that will be assessed by the MCDM panel members
 - Representative: The definition/interpretation of criteria should distinguish the candidate strategies under consideration
- □ The **interpretation** of each criterion should be independent
 - Values of the company are expressed through the interpretation of each criterion during the initial steps of the panel

BEST 402 INDUSTRIAL ECOLOGY: INTERPRETING LCA RESULTS MCDM PANELS: HOW THEY WORK - PRE-PANEL AND PANEL

- \rightarrow 2 to 3 hour meeting with the panel members ideally the day prior to the MCDM panel
- → Summarize the technology options, associated techno-economic results, and clarify questions
- → Introduce the MCDM criteria to the panel members, and their preliminary interpretation

- ightarrow Full-day closed door meeting
- → Interpretation of evaluation criteria in order to raise awareness of decision-makers about criteria complexity
- → Pair-wise comparison of the criteria in the context of their results for each option
- \rightarrow Results presentation/interpretation

BEST 402 INDUSTRIAL ECOLOGY: INTERPRETING LCA RESULTS MCDM PANELS: ACTIVITIES ON PANEL DAY

18

Criteria Interpretation

- Connection between criteria definition and impact/implication
- Essential activity, so panel members use a similar explicit basis for weighing the criterion, better ensuring consistency

Select the Most Important Criterion and Target Value

- What is the most important criterion for decision making?
- What would be an acceptable value for the most important criterion?

Criteria Trade-Offs and Justification

Trade off between each criterion relative to the most important criterion, considering the context of the calculated results

Results of the Criteria and Solutions Ranking

- Score of each criterion based on normalized value of each criterion for the options, and their relative weight
- Presentation of results and discussion with panel members

Consensus on the most important criterion and its target value

Preference elicitation and discussion

This question is asked to each panel member, after identifying IRR as the most important criterion:

- 20
 - Company A would like to invest in renewable fuels production, involving the scaling up of emerging "risky" technologies, while targeting the implementation of multiple large biofuel plants by 2030
 To identify and implement processes that are economically viable, to generate cash flow for further investments
 To ensure that preferred strategies meet sustainability targets through their environmental performance

Princi Phase

Overa produ To traf Reve Phase Opera Phase EBITD Phase Opera EBITD Total C US\$ M Net Pr M) A// IRR A

Identify implementation strategies and associated technology risks

	2021 (year 0)	2023 (year 2)	2025 (year 4)	20	27 (year 6)		2029 (year 8)	└ ───→
S1	Scale-up & designs	Implement XX tpd commercial scale	Start-up	,				
S2	Run integrated trials	Implement XX tpd commercial scale	Start-up					
S 3	Scale-up & designs	Implement XX tpd commercial plant	Start-up					
S 4	Run integrated trials and scale-up	Implement X tpd to ethanol		Expand to XX t and to jet and o	pd diesel	Start-up		
S5	Run integrated trials and scale-up	Implement XX tpd commercial scale;	Start-up					
S 6	Implement XX tpd de	Impleme commer	ent XX tpd cial scale	Start-up				
S7	Implement XX tpd de		Expand to X	tpd	<	Start-up		

Preliminary techno-economics

	S1	S2	S 3	S4	S 5	S6	S7
al product volumes 2	Naphtha: 45 ML/y Diesel: 159 ML/y Oxygen: 280 kt/y	Naphtha: 20 ML/y Diesel: 73 ML/y					
l mass yield to all :ts; fic fuels	33%; 27%	15%; 12%				24%; 24%	36%; 17%
ues (US\$M/a) 2							
ting Costs (US\$M/a) 2							
A (US\$M/a) 2							
ting Margin A/Revenues							
apital Costs (incl. WCI) in illion							
esent Value @ 8% (US\$ phases							
ll phases	10%						

BEST 402 Indus MCDM PANE	STRIAL ECO LS: AN	OLOG [®] EXAI	y: Interpreting MPLE	g LCA Result	ſS		PC	WORLD-CLASS ENGINEERING
21 • Preliminary screening criteria in the context	ening of criteria ntext of the riteria retained teria are ect unique		ninary triage of riteria bank		Identification and prioritization of MCDM client values/drivers/barriers		• Project constraints	
project • Adaptation of criteria • Typically new criteria defined that reflect un values			Further Trie	r Triage of the Set of Criteria			 Persp stake Speci candi 	rerspectives of stakeholders Specifics of the set of candidate strategies
	Projec	t Values	Risk/Po	tential	MCD	M Criteria		
	Market PositioningMarket PositioningTechnology Risk and MitigationTSustainabilityCMarket PositioningCEconomic ViabilityE		Market Risk Technology Ris	k C	 Characteristics of MCDM criteria: Cover a range of categories Are estimates or "surrogates" of perfect values Can be quantitative, or semiu-quantitative 		ria: es	
			GHG Mitigation	n Potential			" of	
			Competitive Ac	dvantage •			າເບ-	
EnVertis	Scalability		Scalability Pote	ential				

Criteria Weighting

Criteria weights are determined by each panel member using the trade-off method

Options Scoring and Prioritization

MCDM Results – **prioritization** of "Preferred Solutions", and alignment between stakeholders

EnVertis

MCDM is an open-ended multi-criteria optimization process that involves project stakeholders, and allows them to express their values in a single day...

→ Triage of a set of investment options to identify those that are most "preferred"

→ Preferred set of
 retained options is based
 on a balanced
 multidisciplinary set of
 considerations, reflected in
 criteria

→ Interpretation of the panel outcomes results in alignment between panel members, and also the reasons

→ Technology transfer to key decision makers in the company, even if they have not been involved in the day-to-day development of the project

BEST 402 INDUSTRIAL ECOLOGY: INTERPRETING LCA RESULTS LECTURE OUTLINE

- 24
 - A very very brief history of LCA from the perspective of design decision-making
 - Some methodological questions related to LCA and design decision-making that we have addressed in our research program over the years
 - Design decision-making, MCDM panels, and LCA-based environmental criteria
 - A case study, and interpreting LCA results for design decision-making
 - Ongoing research activities and take-home messages

BEST 402 INDUSTRIAL ECOLOGY: INTERPRETING LCA RESULTS

BACKGROUND ON THE NATURE OF ENVIRONMENTAL METRICS

25

POLYTECHNIQUE MONTRÉAL

WORLD-CLASS

PROCESS DECISION-MAKING EMPHASIZING ENVIRONMENTAL IMPACT: FAST PYROLYSIS CASE STUDY – PROJECT OBJECTIVES

- 26
 - To identify "winning conditions" for fast pyrolysis implementation in Northern communities, specifically in the context of Happy Valley-Goose Bay, NL
 - To identify fast pyrolysis process options that have "acceptable" economic and environmental performance
 - To conduct an MCDM with project stakeholders to identify "preferred" fast pyrolysis process option(s)
 - To elaborate particularly on the LCA-derived **environmental criteria** used in the MCDM, so that they are correctly weighted

BEST 402 INDUSTRIAL ECOLOGY: INTERPRETING LCA RESULTS VERY VERY BRIEF PRESENTATION OF FAST PYROLYSIS TECHNOLOGY

BEST 402 INDUSTRIAL ECOLOGY: INTERPRETING LCA RESULTS VERY VERY BRIEF PRESENTATION OF FAST PYROLYSIS TECHNOLOGY

BEST 402 INDUSTRIAL ECOLOGY: INTERPRETING LCA RESULTS VERY VERY BRIEF PRESENTATION OF FAST PYROLYSIS TECHNOLOGY

BEST 402 INDUSTRIAL ECOLOGY: INTERPRETING LCA RESULTS

FAST PYROLYSIS "BASE CASE"

31

POLYTECHNIQUE MONTRÉAL WORLD-CLASS ENGINEERING

POLYTECHNIQUE Montréal

> WORLD-CLASS ENGINEERING

FAST PYROLYSIS OPTION: 2 X CAPACITY, PROGRESSIVE CONDENSATION

BEST 402 INDUSTRIAL ECOLOGY: INTERPRETING LCA RESULTS

Process Variant Label	Process Variant	Products in Phase III	Phase I (Years 0-2)	Phase II (Years 3-5)	Phase III (Years 6-26)
FP-360	0. Base Case	Bio-oil, Steam		-	-
FP/CON-720	1.Pyro+, Condensation	Bio-oil with increased LHV (Low Heating Value), steam, lignin		Increase pyrolysis oil capacity (+360 bdmt/d)	Add condensation in series (+0 dbmt/day)
FP/GH/CB-704	B-704 2.Pyro, Greenhouse, Bio-oil, vegetables, Carbonization activated carbon, steam			Add greenhouse (+ 0 bdmt/d)	Add carbonization and Activation (+ 344 bdmt/d)
FP/GH/CON-360	3.Pyro, Greenhouse, Condensation	Bio-oil with increased LHV, vegetables, lignin, steam	Pyrolysis (360 bdmt/d)	Add greenhouse (+ 0 bdmt/d)	Add pyrolysis oil condensation in series (+0 bdmt/d)
FP/CA/CB-704	4.Pyro, Activation, Carbonization	Bio-oil, steam, activated carbon		Add char separation & activation (+ 0 bdmt/d)	Add carbonization (+ 344 bdmt/d)
FP/SW/CON-406	5.Pyro, Sawmill, Condensation	Bio-oil with increased LHV, steam, lumber, lignin		Add sawmill (+46 bdmt/d)	Add condensation in series (+0 bdmt/d)

FAST PYROLYSIS CASE STUDY: TEA/LCA RESULTS

BEST 402 INDUSTRIAL ECOLOGY: INTERPRETING LCA RESULTS

Decision Criterion	Practical Definition	Calculation
IRR: Internal rate of return	Discount rate resulting in a net present value for the project of 0\$	$NPV = \sum_{t=0}^{n} \frac{Monetary flux}{(1 + IRR)^{n}} = 0$
RUEC: Robustness in unfavorable economic conditions	Monthly earnings before interest and taxes under unfavorable market conditions for 6 months, compared to the total capital cost invested over the 3 project phases	RUEC = monthly EBIT under bad market conditions × 6 months / total capital cost × 100
LSEI: Local socio-economic impact	The direct jobs created at Happy Valley-Goose Bay for each process option	LSEI = Estimate of direct jobs created
AFU: Acceptability of forest use	The proportion of land not used during the project in relation to the total area of forest available for harvesting	AFU=area of forest not affected for the entire project / total area of unprotected forest
PIC: Phased implementation capacity risk	The degree of risk for each process option in terms of maturity, scalability, and implementation capacity (Note.: The operational risk was measured based on the impact from a shutdown and resource demand level for repair)	PIC = 60% × [(50% × near-term scaling factor) + (50% near-term operational risk)] + 40% × [(50% × longer-term scaling factor) + (50% longer-term operational risk)]
DSLE: Development of a sustainable local economy	The potential for creating a sustainable local economy by assessing the potential to attract investors, create new income streams, and penetrate local markets	$\label{eq:DSLE} DSLE = 60\% \times \text{creation of new revenue streams in near-term local markets} \\ + \\ 40\% \times \text{creation of new income streams in long-term local markets}$
GHG emissions	The annual potential reduction in greenhouse gas (GHG) emissions associated with biorefinery options in relation to the emissions of the replaced product portfolio	GHG = (GHG emissions from the replaced product portfolio – GHG emissions from the biorefinery portfolio) / GHG emissions from the replaced product portfolio
CT: Carcinogenic toxicity	The annual potential reduction in carcinogenic toxic emissions associated with biorefinery options, compared to the replaced product portfolio	CT = (CT emissions from the replaced product portfolio – CT emissions from the biorefinery portfolio) / CT emissions from the replaced product portfolio

Criteria	Interpretation
IRR (Internal rate of return)	IRR measures the economic benefit (yield) of biorefinery and should be greater than 20%, the minimum acceptable threshold to ensure the profitability of emerging industries in the context of the region.
RUEC (Robustness in unfavorable economic conditions)	The robustness under adverse economic conditions represents the operating margin relative to the worst-case investment in Phase 3, associated in this context with rising biomass prices and fluctuating product prices. If the value of this criterion is greater than 0% , the company will continue its operations.
LSEI (Local socio- economic impact)	The socio-economic impact for the represents a direct and lasting contribution to reducing the unemployment rate. As an example, considering 60% of the working population and a current unemployment rate of 12.7% in Happy Valley-Goose Bay, creation of 100 jobs would reduce this rate by 2 points.
AFU (Acceptability of forest use)	This criterion represents the undeveloped portion of the unprotected forest in the region. A high value of the criterion represents a greater potential for social acceptability of the project.
PIC (Phase 2 & 3 implementation capacity)	This criterion represents the risk associated with technological deployment.
DSLE (Develop sustainable local economy)	Given the high expenditures of the Province of Newfoundland and Labrador on imports, this criterion serves to measure the potential for sustained reductions in expenditures by revenues from local production.
GHG (GHG emissions reduction)	This criterion is used to determine the GHG emissions avoided with the biorefinery plant compared to the replaced product portfolio. For example, a typical 60% decrease for second-generation biofuels is required by the RFS2 program (United States).
CT (Carcinogenic toxicity)	This criterion is used to determine the potential for reducing the impacts on carcinogenic toxicity with the biorefinery plant compared to the replaced product portfolio.

- GHG emissions reduction is directly related to GWP, and relative easy to understand by MCDM panelists having a range of related and unrelated LCA expertise – however the range of GHG emissions between the options was not large, lowering its weight
- There was long discussion by the panelists concerning Carcinogenic Toxicity the panel had difficulty understanding its meaning, as well as the pertinence of the normalized results

POLYTECHNIQUE MONTRÉAL WORLD-CLASS ENGINEERING

- There is a problem with LCA-based criteria how can we best alleviate this difficulty, even as a compromise but better solution? How can we measure whether "the right" weights have been attributed?
- Let's reconsider how we normalize, and how this impacts the clarity of the interpreted LCA-based criteria...

Criterion	Normalization	Practical definition – reduction in	Calculation		
	Method	GHG emissions compared to:			
GHG emissions	Internal (I)	GHG emissions of the replaced product portfolio	GHG = (GHG emissions from the replaced product portfolio – GHG emissions from the biorefinery portfolio) / GHG emissions from the replaced product portfolio		
	External-Simplified (E-S)	Total annual GHG emissions in Labrador	GHG = GHG emissions avoided / Total GHG emissions from Labrador		
	External-Elaborate (E-E)	Considering emissions from residents of the Province of Newfoundland and Labrador	GHG = Distance between [2 tonnes per CO_2 /inhabitant] and [Annual GHG reduction / Number of inhabitants in NL]		

Criterion	Normalization	Practical definition - reduction in	Calculation		
	Method carcinogenic toxic emissi				
		compared to:			
CT	Internal (I)	Carcinogenic emissions of the replaced product portfolio.	CT = Carcinogenic toxic emissions avoided annually / Carcinogenic toxic emissions from the replaced product portfolio		
genic toxicity)	External-Simplified (E-S)	The annual years lost to cancer in Happy Valley- Goose Bay	CT = Years of life not lost with carcinogenic emissions (DALY) / Years of life annually lost due to cancer in Happy Valley-Goose Bay N.B. DALY stands for disability-adjusted life years.		
,,	External-Elaborate (E-E)	This criterion measures the reduction in years of life lost	TC = [(Years of lost life avoided by CT emissions per year / (Newfoundland and Labrador inhabitants)] / [(Years of life lost (consumption patterns in Canada per year) / Inhabitants of Canada)]		

BEST 402 INDUSTRIAL ECOLOGY: INTERPRETING LCA RESULTS LCA CRITERIA: IMPACT OF EXTERNAL NORMALIZATION

BEST 402 INDUSTRIAL ECOLOGY: INTERPRETING LCA RESULTS CASE STUDY: MCDM RESULTS WITH EXTERNAL NORMALIZATION

42

POLYTECHNIQUE MONTRÉAL

> WORLD-CLASS ENGINEERING

BEST 402 INDUSTRIAL ECOLOGY: INTERPRETING LCA RESULTS LECTURE OUTLINE

- 43
 - A very very brief history of LCA from the perspective of design decision-making
 - Some methodological questions related to LCA and design decision-making that we have addressed in our research program over the years
 - Design decision-making, MCDM panels, and LCA-based environmental criteria
 - A case study, and interpreting LCA results for design decision-making
 - Ongoing research activities and take-home messages

BEST 402 INDUSTRIAL ECOLOGY: INTERPRETING LCA RESULTS

SUMMARY OF OUR FAST PYROLYSIS CASE STUDY...

□ Life Cycle Design is increasingly common today

- □ While a powerful concept, LCA and Life Cycle design must be placed into the overall context of design decision-making in order to influence outcomes...
 - Multi-Criteria Decision-Making (MCDM) panels assist in understanding the decision-makers, and creating alignment between decision-making stakeholders
 - Criteria selection is critical: Ideally the sustainability context is reflected in MCDM criteria
 - Weights are determined for (1) the criteria, and (2) criteria values for the options being compared and reflect the values of the MCDM panel members
- LCA-based environmental criteria are important for design, and especially, should be considered in early-stage design
 - As calculated, LCA-based criteria are difficult to interpret, and thus often result in low weights

 the exception being GHG emissions reduction
 - Through external normalization methods, LCA-based criteria can be more understandable to MCDM panel members, increasing the weights of environmental impact criteria

BEST 402 Industrial Ecology – Professor Qingshi Tu

Interpreting Life Cycle Assessment (LCA) Results Case Study: Fast Pyrolysis of Forest Biomass

Thank You – Merci!