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Methods thus far did not strongly perturb chemical properties

• NMR, EPR, (Mössbauer), IR, and (Raman)  probes of ground state properties

• DEex too low to disturb molecular electron density distribution (e)

• benefits of such physical methods

• perturbation is small  very accurately reflects actual molecular ground electronic state

• effect is generally spatially localized  often easily simplified/interpreted/generalized

• disadvantages of such methods

• perturbations of system are small  little about response to larger distortions (i.e., actual chemistry!)

• effects are spatially localized  longer-range interactions are not as influential

• ultimately  chemistry = changes in electronic structure

Spectroscopic probes of electronic structure provide direct insights into

• molecular bonding interactions  energetics of chemically-relevant processes

• split into two parts:

• valence electronic spectroscopy (transitions involving valence electrons)

• core electronis spectroscopy (transitions involving core electrons)
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The Electronic Absorption Experiment

• direct absorption experiment  same as IR spectroscopy except

• IR  intensity reported as “% transmittance”

• Abs  intensity reported as “Absorbance” or optical density (OD)

• absorbance of a sample depends on

• energy/wavelength of incident photons

• interaction of molecule with photons

• concentration of sample (c in M)

• path length (l in cm)

• measured absorbance includes effects from light absorption, scattering, & luminescence

• molar extinction coefficient  all that extinguishes the incident photon intensity

• molar absorbance coefficient  only the part that is absorbed...

3Chemistry 529

3.1.1 Electronic Absorption Spectroscopy

0

% 100%
I

T
I

0 100
log log

%

I
A

I T

A c l
molar 

absorbance 
coefficient

a.k.a. molar absorbtivity, 
molar extinction coefficient

4
scattering

bigger problem at higher energies
2009-W2



The University of British Columbia
Department of Chemistry

Absorbance coefficients & oscillator strengths

• units  M-1cm-1 (coefficients per absorbing molecule)

• relates to oscillator strength (f) of transition

• oscillator strength = intrinsic probability of transition (no units!)

• experimentally:

• theoretically:
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Transition Bandshapes

• homogeneous broadening mechanisms 
 Lorentzian bandshape

• inherent excited state lifetime (natural broadening)

• collisional broadening (decreases lifetime)

• inhomogeneous broadening mechanisms 
 Gaussian bandshape

• population of molecules with differing geometries

• thermal variations (in source, sample, and/or detector)
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Selection rules in electronic absorption

• orbital/state symmetry considerations

• ED component of M always ungerade

• GS and ES must have opposite inversion symmetry

• leads to parity or Laporté selection rule

• parity allowed transitions (g  u, u  g):

• parity forbidden transitions (g  g, u  u):

• all LF transitions are technically forbidden
(unless inversion symmetry is broken)

• spin considerations

• photon can interact with either orbital part (Abs) or electron spin (EPR)

• interaction with both is essentially a two-electron transition (forbidden)

• selection rule for Abs is therefore DS = 0
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Trends in transition metal ion absorption intensities

Transition type e(max) f Bandshape

d-d, spin forbidden, parity forbidden (Oh) 0.1 ~10-7 sharper

d-d, spin forbidden, parity allowed (Td) 1 ~10-6

d-d, spin allowed, parity forbidden (Oh) 10 ~10-4 - 10-5

d-d, spin allowed, parity allowed (Td) 100 ~10-3 - 10-4

Charge Transfer, spin allowed, parity allowed 10,000 ~10-1 broader

• point groups without inversion symmetry: Td, Dnd, Cnv, Cn, S2n+2, C(2n+1)h

• point groups with inversion symmetry: Oh, Dnh, S2n, C(2n)h
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Why are LF transitions observed?

• technically forbidden, so how can they be observed?

• need mechanism to get around the problem

• mix other components into the wavefunction

• two approaches:

• static distortions break inversion symmetry (no longer g or u)

• dynamic distortions break local symmetry  vibronic coupling

• both mechanisms lower symmetry and allow mixing of wavefunctions

• for LF  mix in small amount of ungerade wavefunction yielding gu (allowed)
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Breaking parity symmetry  “intensity borrowing” from CI

• mixing of wavefunctions is perturbation:

• symmetry determined by geometric distortion

• calculated oscillator strength for this situation...

• for eu > 10,000M-1 cm-1 at Eu > 40,000cm-1

and mixing of only 1-2%...

fd-d  10-3 - 10-4 (ed-d  100M-1cm-1) static

fd-d  10-4 - 10-5 (ed-d  10M-1cm-1) dynamic

• example of static mechanism: Td complexes...

• what can d orbitals mix with?
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Vibronic coupling  dynamic mixing

• for centrosymmetric complexes – involves 
electronic + vibrational excitation

• transition probability integral:

• selection rule is therefore

• ligand field transitions in centrosymmetric complexes can therefore gain 
intensity ONLY by mixing with ungerade vibrational modes...

• e.g., the 4A2g 
2T1g transition in ReCl6

2- (d3)
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• the 4A2g 
2T1g transition in ReCl6

2- (d3)

• electric dipole forbidden

• look for vibronic coupling...

• available vibrational modes can
be determined (vide supra)
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Analysis of LF States  Tanabe-Sugano Diagrams

• allows evaluation of Oh/Td complexes

• transitions involving d-d states

• includes effects from ligand field and
electron-electron repulsion (HLF ~ Hee)

• does not include SOC

• only indirectly includes covalency (B)

• derived from ligand field matrices that
allow for mixing of states due to e-e
repulsion and ligand field effects.
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• example of ligand field matrices (for d5 case)
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• example of ligand field matrices (for d5 case)...
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Low-symmetry effects in Ligand Field States

• TS Diagrams are only for Oh / Td symmetries – lower symmetry?

• more possibilities for mixing (analysis of states is more complex)

• easier to evaluate orbital splitting/mixing 
& then derive states

• single-crystal polarized Abs can be
extremely useful in determining 
effects of low-symmetry splitting 
of states...

• Oh/Td  transition moment 
operator is isotropic

• in lower symmetries – it rarely is
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• e.g., D2d distorted [CuCl4]2-

• why does it distort?

• what is the effect of the distortion on
the electronic structure of the complex?

• what is the effect of the spectroscopy?
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• e.g., D2d distorted [CuCl4]2- (continued)

• crystals are orthorhombic

• site symmetry  D2d (strictly Cs)

• crystallizes as plates with ab face
• E || b = (x,y)2

• E || a = 0.638(z)2 + 0.362(x,y)2

• look along b-axis to determine polarization

• assignment of major components is easy...
but some features don’t makes sense:

• additional peak at ~8000 cm-1

• peak at ~5000cm-1 changes with polarization

• why does this happen?

• site symmetry is actually Cs and NOT D2d

• 2E excited state (1) splits into 2A’ and 2A” components,
which causes splitting of 5000 cm-1 peak (by ~1000cm-1)

• forbidden 2B transforms to 2A”  can now mix with 
one component of 2E (intensity at ~8000cm-1)
with intensity along the (x,y) direction
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Charge Transfer Transitions in TM Complexes

• CT transitions involve taking e- from
one atomic center to another:

• both LM (LMCT) & ML (MLCT)

• sometimes called redox transitions 
(involve e transfer)

• more intense than LF transitions

• involve larger changes in electric dipole moment

• interatomic transitions not parity forbidden

• involve three possible terms...
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• usual origin of low-energy CT transitions (i.e., visible or near-UV)

• LMCT  usually result from non-bonding (or weakly p-bonding) ligand orbitals

• MLCT  usually result from transitions to weakly p-antibonding ligand orbitals (p*)

• ligand centered transitions  transitions that occur to/from the ligand 
• no direct participation from the metal

• these are sometimes enhanced by the presence of the metal through indirect coupling

• mostly occur when ligand involves p-bonding network

• intensities of CT transitions

• intensity mechanism depends on LL overlap

• but intensity is generally directly dependent on
metal-ligand covalency (i.e. M-L overlap)

• intensity reflects covalency of metal centre

• transition energies of CT processes

• generally very complex (depends on many factors)

• since CT transitions involve e transfer  related to redox properties of donor/acceptor

• donor/acceptor orbital energies  from valence shell ionization energies (VSIE, Hii)
• directly related to electronegativities  define “optical” electronegativities (C. K. Jørgensen)
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• e.g., CuA centre in cytochrome c oxidase

• Cyt c Oxidase  terminal oxidase involved in aerobic respiration

• role of CuA  electron conduit

• electron acceptor from cytochrome c

• electron donor to heme a

• reduction potential must be accurately 
tuned for effective electron transport

• potential must be "tuned" by the protein 
such that

• weaken axial ligands  less charge donation = more stable reduced site
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• SCu LMCT is much lower in energy for CuA centre

• we also see a higher energy for the Cu YY*

• results from direct metal-metal overlap

• yields better coupling for electron transfer

• allows for faster/more efficient directional ET
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