Chemistry 529 Problem Set #2 – Magnetic Resonance Methods

- 1. Construct a proper energy level diagram for a spin system where a single $I_1 = \frac{1}{2}$ nucleus is coupling with three identical $I_{2,2',2''} = \frac{1}{2}$ nuclei where $\sigma_1 > \sigma_2$ and $J_{12} < 0$. Carefully label the diagram showing all allowed transitions for each set of nuclei. Derive the energy expressions for the resultant levels as well as for the allowed transitions. Also draw a qualitative NMR spectrum for this situation. [Assume there is no scalar coupling between identical nuclei]
- 2. What is the biggest contribution to "chemical shift" in the following cases. Explain.
 - a) The ¹H NMR of a six-coordinate low-spin ferrous complex.
 - b) The ¹H NMR of a six-coordinate low-spin ferric complex.
 - c) The EPR of a six-coordinate low-spin ferrous complex.
 - d) The EPR of a six-coordinate low-spin ferric complex.
- 3. There are two major ways for two magnetic moments to interact with each other. What are these and how do they manifest themselves in solution-phase 1D NMR?
- 4. What differences would you expect for the g factors of Co^{2+} in O_h vs. T_d coordination environments and in the ability to obtain a spectrum at room temperature?
- 5. Generate a *practical* problem set question (with a solution!!!!) on NMR spectroscopy. An example of such a question is shown below:

The following figure shows the ¹H NMR spectrum of the SMe₂ signal of the following Pt dimer complete with ¹⁹⁵Pt satellites. Account for the coupling pattern that is observed.

6. Generate a *practical* problem set question (with a solution!!!!) on EPR spectroscopy.