
Resource sharing and blocking

The Mars Pathfinder
Unbounded priority inversion
Priority inheritance

1

Lecture overview

• Unbounded priority inversion problem (occurred in the Mars Pathfinder)

• Blocking and the priority inheritance protocol

• Multithreading and synchronization

• Semaphores are the most common mechanism

• Supported by the PThreads library

2

What really happened on Mars?

• 

Source: NASA JPL 3

4 Source: NASA JPL

5

6

Mars Pathfinder

7

Mars Pathfinder

• Many important tasks

• bc_sched: plans transactions on the 1553 bus

• highest priority task

• bc_dist: gathers data from the 1553 bus

•  third-highest priority task

•  lots of medium-priority tasks

• asi/met: handles data collection for scientific experiments

•  low priority task

8

Schedule

T = 0.125 seconds

The first thing bc_sched would do is make sure that bc_dist
had finished;

if not, it would reset the system (so the Deadline for bc_dist
was t4)

9

10

11

12

13

14

15

16

This phenomenon is called Priority Inversion.

17

Blocking

• Tasks have synchronization constraints

• Use semaphores to protect critical sections

• Blocking can cause a higher priority task to wait for a lower
priority task to unlock a resource

• We always assumed that higher priority tasks can preempt
lower priority tasks

• As it turns out, that may not be the case... so how do we make
the priority rules consistent

18

The priority inheritance protocol

• Allow a task to inherit the priority of the highest priority task that it is
blocking

High-priority task

Low-priority task

Lock S

Attempt to lock S
results in blocking

Preempt

Unlock S

Lock S

Unlock S

Priority
Inversio
n

19

The priority inheritance protocol

• Allow a task to inherit the priority of the highest priority task that it is
blocking

High-priority task

Low-priority task

Lock S

Preemp
t Intermediate-priority tasks

Preempt.

…

Unbounded Priority Inversion

Attempt to lock S
results in blocking

20

The priority inheritance protocol

• Allow a task to inherit the priority of the highest priority task that it is
blocking

…

High-priority task

Low-priority task

Lock S

Preempt

Intermediate-priority tasks
…

Attempt to lock S
results in blocking

Lock S

Unlock S

Unlock S

Priority inheritance

21

The importance of good theory

•  [Speaking on the Mars Pathfinder problem at the Real-Time Systems Symposium 1997] David
[David Wilner, CTO, WindRiver Systems and makers of VxWorks] also said that some of the
real heroes of the situation were some people from CMU who had published a paper he'd
heard presented many years ago who first identified the priority inversion problem and
proposed the solution. He apologized for not remembering the precise details of the paper
or who wrote it. Bringing things full circle, it turns out that the three authors of this result
were all in the room, and at the end of the talk were encouraged by the program chair to
stand and be acknowledged. They were Lui Sha, John Lehoczky, and Raj Rajkumar. When was
the last time you saw a room of people cheer a group of computer science theorists for
their significant practical contribution to advancing human knowledge? :-) It was quite a
moment.

•  From “What really happened on Mars?”

•  Mike B. Jones, Microsoft;
http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html

•  For the record, the paper was: L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance
Protocols: An Approach to Real-Time Synchronization. In IEEE Transactions on Computers,
vol. 39, pp. 1175-1185, Sep. 1990.

22

Blocking time

• What is the longest time a task can be blocked (waiting for lower
priority tasks to release a resource)?

• Let there be N tasks and M semaphores

• The length of the largest critical section of Task Ti is Bi

23

Blocking time

• Consider the instant when a high-priority task arrives

• What is the maximum length of time it may need to wait for a
lower priority task to finish?

Semaphore Queue
Resource

1

Semaphore Queue
Resource

2

Semaphore Queue
Resource

M

If I am a task, priority inversion occurs
when
(a) Lower priority task holds a
resource I need (direct blocking)
(b) Lower priority task inherits a
higher priority than me because it
holds a resource the higher-priority
task needs (push-through blocking)

24

Maximum blocking time

• If all critical sections are of equal length, B

• Blocking time = B x min(N, M)

• Why?

• And what if the critical sections are of differing lengths?

Semaphore Queue Resource
1

Semaphore Queue
Resource

2

Semaphore Queue
Resource

M

If I am a task, priority inversion occurs
when
(a) Lower priority task holds a
resource I need (direct blocking)
(b) Lower priority task inherits a
higher priority than me because it
holds a resource the higher-priority
task needs (push-through blocking)

25

Maximum blocking time

• If all critical sections are of equal length, B

• Blocking time = B x min(N, M)

• Why?

• And what if the critical sections are of differing lengths?

• Find the maximum length critical section for each resource

• Add the top min(N, M) sections in size

• The total priority inversion time experienced by Task Ti is
denoted Bi

• Remember: when computing the blocking time, you need only
consider tasks with lower priority.

26

Highlights

•  We discussed the unbounded priority inversion problem and the
impact of blocking on a high-priority task.

•  A high-priority task is blocked when a low-priority task holds a
resource (maybe a semaphore) that the high-priority task needs.

•  Unbounded priority inversion can be avoided if we use the priority
inheritance protocol.

•  For schedulability analysis, we need to determine the maximum
blocking time a task can experience. This can be computed by
considering the resources used by lower priority tasks.

27

